Home: PC 1672 home page | Up: 4 Rigid-body motion | Weekly plan | Help: Guide to using this document |
Next: 4.5 Principal axes | Previous: 4.3 Tensors |

PC1672 Advanced dynamics


4.4 Moment-of-inertia tensor

The moment-of-inertia tensor relates the angular momentum of a rigid body to its angular velocity,

\begin{displaymath}{\bf L}=\underline{\underline{\bf I}}\cdot\hbox{\boldmath {$\omega$}}\end{displaymath}

The corresponding rotational kinetic energy has the form

\begin{displaymath}T={1\over 2}\hbox{\boldmath {$\omega$}}\cdot
\underline{\underline{\bf I}}\cdot\hbox{\boldmath {$\omega$}}\end{displaymath}

The tensor can be written

\begin{displaymath}\underline{\underline{\bf I}}=\sum_\alpha m_\alpha\left[({\bf...
...e{\underline{\bf 1}}-{\bf x}_\alpha\otimes{\bf x}_\alpha\right]\end{displaymath}

Its components are

\begin{displaymath}I_{ij}=\sum_\alpha m_\alpha\left[({\bf x}_\alpha^2)\delta_{ij}
-x_{\alpha i}x_{\alpha j}\right]\end{displaymath}

The moment-of-inertia is symmetric

\begin{displaymath}\underline{\underline{\bf I}}^{\rm T}=\underline{\underline{\bf I}}\end{displaymath}

In other words, its components form a real symmetric $3\times 3$ matrix,

\begin{displaymath}I_{ij}=I_{ji}\end{displaymath}

This means that the tensor has only six independent components. These include the three diagonal ones, for example $I_{11}$ which has the form

\begin{displaymath}I_{11}=\sum_\alpha m_\alpha \left(x_{\alpha 2}^2+x_{\alpha 3}^2\right)\end{displaymath}

We recognise this as the ordinary moment of inertia about the $x_1$-axis (involving the square of the distance of each atom from the axis). There are also three independent off-diagonal components, for example $I_{12}$ which has the form

\begin{displaymath}I_{12}=-\sum_\alpha m_\alpha x_{\alpha 1} x_{\alpha 2}\end{displaymath}

and is known as a product of inertia.

If we treat the body as a continuous distribution of matter with density $\rho({\bf x})$ then we can replace the sum over atoms by an integral over volume:

\begin{displaymath}I_{ij}=\int\!\!\int\limits_V\!\!\int\rho({\bf x})\left[{\bf x}^2\delta_{ij}
-x_i x_j\right]{\rm d}V\end{displaymath}

The components of $\underline{\underline{\bf I}}$ can then be evaluated by using the usual techniques for multiple integration.

For a thin flat plate the inertia tensor has a particularly simple form. If the plate lies in the plane $x_3=0$ we have

\begin{displaymath}I_{13}=I_{23}=0\end{displaymath}

In addition, the moment of inertia about the $x_3$-axis, normal to the plate, is given by the perpendicular axes theorem:

\begin{displaymath}I_{33}=I_{11}+I_{22}\end{displaymath}

Hence we need to calculate only $I_{11}$, $I_{22}$ and $I_{12}$ for such a body. For example $I_{11}$ can be written

\begin{displaymath}I_{11}=\int\limits_A\!\!\int\sigma({\bf x})x_2^2\,{\rm d}S\end{displaymath}

where $\sigma({\bf x})$ is the surface mass density of the plate.

Textbook references


Home: PC 1672 home page | Up: 4 Rigid-body motion | Weekly plan | Help: Guide to using this document |
Next: 4.5 Principal axes | Previous: 4.3 Tensors |

Mike Birse
17th May 2000