next up previous contents index
Next: Hyperbolic Trigonometry Previous: The N-particle partition function for distinguishable


Details of the paramagnet calculation

The starting point is the Boltzmann probabilities for the two energy states of a single spin, $\varepsilon_\uparrow=-\mu B$ and $\varepsilon_\downarrow=\mu B$:

\begin{eqnarray*}
p_\uparrow \!\!\!&=&\!\!\!{e^{ \mu B/ k_{\scriptscriptstyle B...
...+e^{-\mu B/ k_{\scriptscriptstyle B}T}=2{\rm cosh }(\mu B\beta)
\end{eqnarray*}



In this simple case both the average energy and magnetisation of a single spin can be found directly from the probabilities:

\begin{eqnarray*}
\left\langle E_1 \right\rangle \!\!\!&=&\!\!\!\varepsilon_\upa...
...\beta) \qquad\hbox{(using $\beta=1/k_{\scriptscriptstyle B}T$)}
\end{eqnarray*}



and similarly

\begin{eqnarray*}
\left\langle m_1 \right\rangle \!\!\!&=&\!\!\!(+\mu) p_\uparrow +(-\mu) p_\downarrow \\
\!\!\!&=&\!\!\!\mu \tanh (\mu B\beta)
\end{eqnarray*}



But for things like the entropy which only makes sense for the whole system, and as a warm-up for more complicated cases, we can use the partition function method instead; the results for the energy and magnetisation are the same.

We also have

\begin{displaymath}
\left\langle F \right\rangle =-k_{\scriptscriptstyle B}T\ln\...
...=-Nk_{\scriptscriptstyle B}T\ln\left(2\cosh(\mu B\beta)\right)
\end{displaymath}

and

\begin{eqnarray*}
\left\langle S \right\rangle \!\!\!&=&\!\!\!-\left({\partial \...
...\cosh(\mu B\beta)\right)-{ \mu B\beta} \tanh(\mu B\beta)\right\}
\end{eqnarray*}



which does indeed equal $(E-F)/T$.


next up previous contents index
Next: Hyperbolic Trigonometry Previous: The N-particle partition function for distinguishable
Judith McGovern 2004-03-17