Home: PC 1672 home page | Up: 3 Gravity | Weekly plan | Help: Guide to using this document |
Next: 3.11 Space travel | Previous: 3.9 Satellites |

PC1672 Advanced dynamics


3.10 Orbital energies

The fact the total energy of an object

\begin{displaymath}\eta={1\over 2}v^2-{GM\over r}=-{GM\over 2a}\end{displaymath}

is a constant can be used to find the speed of the object at any point in its orbit

\begin{displaymath}v^2=GM\left({2\over r}-{1\over a}\right)\end{displaymath}

At pericentre $r_1=a(1-\epsilon)$ the object has maximum speed

\begin{displaymath}v_1^2={GM\over a}{1+\epsilon\over 1-\epsilon}\end{displaymath}

while at apocentre $r_2=a(1+\epsilon)$ it has minimim speed

\begin{displaymath}v_2^2={GM\over a}{1-\epsilon\over 1+\epsilon}\end{displaymath}

The angular momentum of the object

\begin{displaymath}\lambda=\vert{\bf r}\times{\bf v}\vert\end{displaymath}

is also a constant. It is most easily calculated at pericentre or apocentre, when the velocity is perpendicular to the radius and so

\begin{displaymath}\lambda=r_1v_1\end{displaymath}

Textbook references


Home: PC 1672 home page | Up: 3 Gravity | Weekly plan | Help: Guide to using this document |
Next: 3.11 Space travel | Previous: 3.9 Satellites |

Mike Birse
17th May 2000