next up previous
Next: Hint 2 Up: Examples 2 Previous: Question 6

  
Hint 1

As discussed in the lectures, the apparent gravitational field at a distance $r$ from the axis of rotation is

\begin{displaymath}{\bf g}_{\rm eff}=-g{\bf e}_3+r\omega^2\hat{\bf r}.\end{displaymath}

At equilibrium, this vector will be normal to the surface of the water. By considering an infinitessimal tangent vector to the surface, ${\rm d}{\bf x}=\hat{\bf r}\,{\rm d}r+{\bf e}_3\,{\rm d}x_3$, show that

\begin{displaymath}{{\rm d}x_3\over{\rm d}r}={r\omega^2\over g},\end{displaymath}

and hence integrate to get the parabola

\begin{displaymath}x_3={r^2\omega^2\over 2g}+C.\end{displaymath}



Mike Birse
2000-03-31