next up previous
Next: About this document ... Up: Examples 1 Previous: Hint 7

  
Hint 8

By symmetry both photons must have the same energy $E_\gamma$. Taking the ${\bf e}_1$ axis to be the direction of the pion's motion, the 4-momenta of the photons are:

\begin{displaymath}{\sf p}_{\gamma 1}=(E_\gamma/c)(\cos\theta,\,\sin\theta,\,0,\...
... p}_{\gamma 2}=(E_\gamma/c)
(\cos\theta,\,-\sin\theta,\,0,\,i).\end{displaymath}

Conservation of 4-momentum implies that the sum of these is equal to the 4-momentum of the original pion,

\begin{displaymath}{\sf p}_{\pi}=\gamma(v) m_\pi(v,0,0,ic).\end{displaymath}

Hence energy conservation requires that $2E_\gamma=\gamma(v) m_\pi c^2$and so $E_\gamma=339$ MeV.

To find the angle $\theta$, we can square the total 4-momentum to get

\begin{displaymath}({\sf p}_{\gamma 1}+{\sf p}_{\gamma 2})^2
=2{\sf p}_{\gamma 1}\cdot{\sf p}_{\gamma 2}=-m_\pi^2 c^2.\end{displaymath}

This gives $\theta=0.2$ rad. (An alternative method to get $\theta$ is to use $p_1$ conservation.)



Mike Birse
2001-01-16