next up previous
Next: About this document ... Up: 1999 exam paper Previous: Hint 3

  
Hint 4

(a) In terms of the preigee distance $r_1$ and the apogee distance $r_2$, the semimajor axis is

\begin{displaymath}a+{r_1+2_2\over 2}=6R\end{displaymath}

The eccentricity is

\begin{displaymath}\epsilon={a-r_1\over a}={2\over 3}\end{displaymath}

(b) The energy in orbit is

\begin{displaymath}E=-{GMm\over a}\end{displaymath}

(which the same as for a circular orbit of radius $a$). The energy at rest on the Earth's surface is purely potential,

\begin{displaymath}E_0=-{GMm\over R}\end{displaymath}

Hence an energy

\begin{displaymath}E-E_0={11\over 12}{GMm\over R}\end{displaymath}

is needed.

(c) At perigee the energy consists of kinetic and potential pieces,

\begin{displaymath}E={1\over 2}mv_1^2-{GMm\over r_1}\end{displaymath}

Using the expression for the total energy above gives

\begin{displaymath}v_1=\sqrt{{5\over 6}{GM\over R}}\end{displaymath}

(d) At perigee the velocity is perpendicular to the radius and so the angular momentum is

\begin{displaymath}L=mr_1v_1=m\sqrt{{10\over 3}GMR}\end{displaymath}

(and points along the normal to the plane of the orbit).



Mike Birse
2000-03-31