next up previous
Next: Hint 2 Up: 2000 exam paper Previous: Question 4

  
Hint 1

(a)

$\displaystyle p'_1$ $\textstyle =$ $\displaystyle p_1,$  
$\displaystyle p'_2$ $\textstyle =$ $\displaystyle {p_2 - VE\over \sqrt{1-V^2/c^2}c^2 },$  
$\displaystyle p'_3$ $\textstyle =$ $\displaystyle p_3,$  
$\displaystyle E'$ $\textstyle =$ $\displaystyle {E - Vp_2/c^2 \over \sqrt{1-V^2/c^2} } .$  

(b) ${\bf F}_{\rm cent}=-m\hbox{\boldmath$\omega$ }\times(\hbox{\boldmath$\omega$ }
\times{\bf x})$

(c) Zero

(d) See 3.6 Central-force motion

(e) Your diagram should show: the normal to the plate, the line bisecting the plate through the fixed point (axis of symmetry), and the edge on which the fixed point lies (perpendicular to the other two principal axes).



Mike Birse
2001-03-22