next up previous contents index
Previous: Example: The Otto cycle


Answer

\begin{figure}\begin{center}\mbox{\epsfig{file=otto.eps,width=6truecm,angle=0}}
\end{center}\end{figure}

For the adiabatic strokes, $Q=0$ and $W=c_V(T_f-T_i)$. (See a previous example.)

For the isochoric (constant volume) paths, $W=0$ and $Q=c_V(T_f-T_i)$.

Also

\begin{displaymath}
T_2=\left({V_1\over V_2}\right)^{\gamma-1} T_1 \qquad\hbox{and}\qquad
T_3=\left({V_1\over V_2}\right)^{\gamma-1} T_4
\end{displaymath}

The total work done by the system is

\begin{displaymath}
W= -(W_{12}+W_{34}) =c_V(T_1-T_2+T_3-T_4)
\end{displaymath}

so

\begin{displaymath}
\eta={W\over Q_H}={T_1-T_2+T_3-T_4\over T_3-T_2}=1-\left({V_2\over V_1}\right)^{\gamma-1}
\end{displaymath}


next up previous contents index
Previous: Example: The Otto cycle
Judith McGovern 2004-03-17