Home: PC 1672 home page | Up: 3 Gravity | Weekly plan | Help: Guide to using this document |
Next: 3.4 Gravitational potentials | Previous: 3.2 Conservative forces |

PC1672 Advanced dynamics


3.3 Gravitational potential energy

The gravitational potential energy of two masses separated by a distance $r$is

\begin{displaymath}U(r)=-{GMm\over r}\end{displaymath}

Using the chain rule for $\nabla$$U$ we find that the corresponding force is

\begin{displaymath}{\bf F}=-{{\rm d}U\over{\rm d}r}\hbox{\boldmath $\nabla$}r\end{displaymath}

which agrees with the form above since

\begin{displaymath}\hbox{\boldmath $\nabla$}r={\bf e}_r\end{displaymath}

Note that a $1/r$ potential corresponds to a $1/r^2$ force.

For an object moving near the Earth, the total energy

\begin{displaymath}E={1\over 2}mv^2-{GM_Em\over r}\end{displaymath}

is constant. We can use this to show that an object with speed

\begin{displaymath}v_{\rm esc}=\sqrt{2GM_E\over R_E}=11.2\ \hbox{\rm km s$^{-1}$}\end{displaymath}

at the surface of the Earth is just able to escape from the Earth to infinity.

Textbook references


Home: PC 1672 home page | Up: 3 Gravity | Weekly plan | Help: Guide to using this document |
Next: 3.4 Gravitational potentials | Previous: 3.2 Conservative forces |

Mike Birse
17th May 2000