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4 The Statistical Physics of non-Isolated systems:

The Canonical Ensemble

In principle the tools of Chap. 3 suffice to tackle all problems in statistical physics. In
practice the microcanonical ensemble considered there for isolated systems (E, V,N
fixed) is often complicated to use since it is usually (i.e., except for ideal, non-
interacting systems) very difficult to calculate all possible ways the energy can be
split between all the components (atoms). However, we may also consider non-isolated
systems, and in this chapter we consider systems in contact in with a heat reservoir,
where temperature T is fixed rather than E. This then leads us to the canonical
ensemble. In Chap. 3, we have introduced the canonical ensemble as many copies
of a thermodynamic system, all in thermal contact with one another so energy is
exchanged to keep temperature constant throughout the ensemble. In this chapter
we will introduce the Boltzmann distribution function by focusing on one copy
and considering the rest copies as a giant heat reservoir:

Canonical Ensemble = System + Reservoir.

The important point to note is that for a macroscopic system the two approaches
are essentially identical. Thus, if T is held fixed the energy will statistically fluctuate,
but, as we have seen, the fractional size of the fluctuations ∝ 1/

√
N (we will verify

this explicitly later). Thus, from a macroscopic viewpoint, the energy is constant to
all intents and purposes, and it makes no real difference whether the heat reservoir
is present or not, i.e., whether we use the microcanonical ensemble (with E, V,N
fixed) or the canonical ensemble (with T, V,N fixed). The choice is ours to make,
for convenience or ease of calculations. We will see canonical ensemble is much more
convenience.

As we see below, the canonical ensemble leads to the introduction of some-
thing called the partition function, Z, from which all thermodynamic quantities
(P,E, F, S, · · ·) can be found. At the heart of the partition function lies the Boltz-
mann distribution, which gives the probability that a system in contact with a heat
reservoir at a given temperature will have a given energy.
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4.1 The Boltzmann distribution

Figure 1
Consider a system S in contact with a heat reservoir R at temperature T as shown

in Figure 1. The whole, (R+S), forms an isolated system with fixed energy E0. Heat
can be exchanged between S and R, but R is so large that its temperature remains
T if heat is exchanged. We now ask: What is the probability pi that the system S is
in a particular microstate with energy Ei?

We assume that S and R are independent of each other. The total number of
microstates

Ω = ΩR × ΩS.

Now, if we specify the microstate of ΩS to be the ith microstate, ΩS = 1, we have

Ω = Ω(E0, Ei) = ΩR(E0 −Ei) × 1.

Thus, the probability pi of S being in a state with energy Ei depends on the number
of microstates of R with energy E0 − Ei,

pi = pi(Ei) =
ΩR(E0 −Ei)

Ω(E0)
=

number of microstates of (S +R)withS in state i

total number of microstates of (S +R)
.

Now, use the Boltzmann relation S = kB ln Ω from Eq. (1) of Chap. 3,

ΩR(E0 −Ei) = exp
[

1

kB
SR(E0 − Ei)

]

.

If R is a good reservoir it must be much bigger than S. So, let’s Taylor expand around
E0:

SR(E0 − Ei) = SR(E0) −Ei





(

∂SR

∂E

)

V,N





E=E0

+
1

2!
E2

i





(

∂2SR

∂E2

)

V,N





E=E0

+ · · · .
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But, from the thermodynamic relations involving partial derivative of S,,

(

∂SR

∂E

)

V,N

=
1

T
,

(

∂2SR

∂E2

)

V,N

=

[

∂(1/T )

∂E

]

V,N

= − 1

T 2

(

∂T

∂E

)

V,N

= − 1

T 2CV
.

Thus,

SR(E0 − Ei) = SR(E0) −
Ei

T
− E2

i

2T 2C
(R)
V

+O(E3
i ).

If R is large enough, C
(R)
V T � Ei and only the first two terms in the expansion are

nonzero,

pi ∝ ΩR(E0−Ei) = exp
[

1

kB
SR(E0 − Ei)

]

= exp

[

SR(E0)

kB
− Ei

kBT

]

= const.×e−Ei/kBT

since SR(E0) is a constant, independent of the microstate index i. Call this constant
of proportionality 1/Z, we have

pi =
1

Z
e−Ei/kBT , (1)

where Z is determined from normalization condition. So if we sum over all microstates

∑

i

pi = 1

we have
Z =

∑

i

e−Ei/kBT , (2)

where sum on i runs over all distinct microstates. pi of Eq. (1) is the Boltzmann
distribution function and Z is called the partition function of the system S. As we
will see later, partition function Z is very useful because all other thermodynamic
quantities can be calculated through it.

The internal energy can be calculated by the average

〈E〉 =
∑

i

Eipi =
1

Z

∑

i

Eie
−Ei/kBT . (3)

We will discuss calculation of other thermodynamc quantities later. We want to
emphasize also that the index i labels the microstates of N -particles and Ei is the
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total energy. For example, a microstate for the case of an spin-1/2 paramagnet of N
independent particles is a configuration of N spins (up or down):

i = (↑, ↑, ↓, . . . , ↓).

For a gas of N molecules, however, i represents a set of values of positions and
momenta as

i = (r1, r2, . . . , rN;p1,p2, . . . ,pN),

as discussed in Chap. 3
[Ref.: (1) Mandl 2.5; (2) Bowley and Sánchez 5.1-5.2]

4.2 The independent-particle approximation: one-body par-
tition function

If we ignore interactions between particles, we can represent a microstate ofN -particle
system by a configuration specifying each particle’s oocupation of the one-body states,

i = (k1, k2, . . . , kN), (4)

meaning particle 1 in single-particle state k1, particle 2 in state k2, etc., (e.g., the
spin configurations for a paramagnet). The total energy in the microstate of the N
particles is then simply the sum of energies of each particle,

Ei = εk1
+ εk2

+ . . .+ εkN
,

where εk1
is the energy of particle 1 in state k1 etc. The partition function of the

N -particle system of Eq. (2) is then given by,

Z = ZN =
∑

i

e−Ei/kBT =
∑

k1,k2,...,kN

exp
[

− 1

kBT
(εk1

+ εk2
+ . . .+ εkN

)
]

.

If we further assume that N particles are distinguishable, summations over k’s are
independent of one another and can be carried out separately as

ZN =
∑

k1,k2,...,iN

e−εk1
/kBT e−εk1

/kBT · · · e−εkN
/kBT

=





∑

k1

e−εk1
/kBT









∑

k2

e−εk2
/kBT



 · · ·




∑

kN

e−εkN
/kBT



 . (5)

We notice that in the last equation, the summation in each factor runs over the same
complete single-particle states. Therefore, they are all equal,

∑

k1

e−εk1
/kBT =

∑

k2

e−εk2
/kBT = · · · =

∑

kN

e−εkN
/kBT .
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Hence, the N -particle partition function in the independent-particle approximation
is,

ZN = (Z1)
N

where
Z1 =

∑

k1

e−εk1
/kBT

is the one-body partition function. We notice that the index k1 in the above equation
labels single particle state and εk1

is the corresponding energy of the single particle,
contrast to the index i used earlier in Eqs. (1) and (2), where i labels the microstate
of total N -particle system and εi is the corresponding total energy of the system.

The above analysis are valid for models of solids and paramagnets where particles
are localized hence distinguishable. However, particles of a gas are identical and are
moving around the whole volume; they are indistinguishable. The case of N indis-
tinguishable particles is more complicated. The fact that permutation of any two
particles in a configuration (k1, k2, . . . , kN) of Eq. (3) does not produce a new mi-
crostate imposes restrictions on the sum

∑

i =
∑

k1,k2,...,kN
; the number of microstates

is hence much reduced and sums over k’s are not longer independent of each other.
The simple separation method of Eq. (5) is invalid. For a classical ideal gas, if we
assume the N particles are in different single-particle states (imagine N molecules in
N different cubicles of size h3 in the phase-space (r,p)), the overcounting factor is
clearly N ! as there are N ! permutations for the same microstate (k1, k2, . . . , kN). We
hence approximate the partition function of N classical particles as,

ZN ≈ 1

N !
(Z1)

N .

Summary of the partition function in the independent-particle approximation

• N distinguishable particles (models of solids and paramagnets):

ZN = (Z1)
N ; (6)

• N indistinguishable classical particles (classical ideal gas):

ZN ≈ 1

N !
(Z1)

N ; (7)

• In both Eqs. (6) and (7),
Z1 =

∑

k1

e−εk1
/kBT (8)

is the one-body partition function, with εk1
the single-particle energy.
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Example. Consider a system of two free (independent) particles. Assuming that
there are only two single-particle energy levels ε1, ε2, by enumerating all possible two-
body microstates, determine the partition functions Z2 if these two particle are (a)
distinguishable and (b) indistinguishable.
Solution: (a) We list all four possible microstates of two distinguishable particles in
the following occupation diagram:

Notice that the 2nd and 3rd states are different states as two particles are distin-
guishable. By definition, the partition function of the two-particle system is given
by

Z2 =
∑

i

e−Ei/kBT = e−2ε1/kBT +2e−(ε1+ε2)/kBT +e−2ε2/kBT = (e−ε1/kBT +e−ε2/kBT )2 = Z2
1 ,

agreed with the general formula ZN = (Z1)
N of Eq. (6). The average energy of the

two-particle system is give by, according to Eq. (3)

〈E〉 =
1

Z

∑

i

Eie
−Ei/kBT =

1

Z2

[

(2ε1)e
−2ε1/kBT + 2(ε1 + ε2)e

−(ε1+ε2)/kBT + (2ε2)e
−2ε2/kBT

]

.

(b) For two identical particles, there are only three microstates as shown the following
occupation-number diagram.

The corresponding partition function is then given by

Z2 =
∑

i

e−Ei/kBT = e−2ε1/kBT + e−(ε1+ε2)/kBT + e−2ε2/kBT .

Notice that this partition function of two identical particles Z2 6= 1
2!
Z2

1 as given by
Eq. (7). Only the middle term has same weight as given by 1

2!
Z2

1 . The average energy
of the two-particle system is

〈E〉 =
1

Z

∑

i

Eie
−Ei/kBT =

1

Z2

[

(2ε1)e
−2ε1/kBT + (ε1 + ε2)e

−(ε1+ε2)/kBT + (2ε2)e
−2ε2/kBT

]

.

7



For the case of a two-particle system with three states, see Q1 of Example Sheet 9.
Note:

(a) It is important to note that the sum in Eq. (8) runs over all single-particle states
k1, and not over all different energies. A given energy eigenvalue εk1

may be
degenerate, i.e., belong to more than one (different) state. We can also express
Eq. (8) alternatively as a sum over distinct energy levels, as

Z1 =
∑

k1

e−εk1
/kBT =

∑

εk1

g(εk1
)e−εk1

/kBT , (9)

where g(εk1
) is the degeneracy factor at energy level εk1

.

(b) One-body partition function Z1 is a useful quantity for determining N -particle
partition function in the independent-particle approximation. Z1 itself has no
physical meaning as temperature is undefined for a single particle system.

(c) Even if we ignore interaction completely (i.e., in the independent-particle ap-
proximation) and restrict to classical mechanics, many-body effects still appear
for N identical particles as demonstrated by the 1/N ! factor.

(d) Equation (6) is invalid in the low temperature limit where quantum effects
dominate (e.g., a significant portion of particles of a quantum gas are in the zero-
momentum state: the Bose-Einstein condensation). A proper way to tackle the
problems of identical particles is to introduce occupation-number configurations
and to employ grandcanonical ensemble. A third-year course (Fermions and

Bosons) will discuss this subject in details.

[Ref.: (1) Mandl 7.1]

4.3 Examples of partition function calculations

We will see later all thermodynamic quantities (E, S, F, P etc.) can be determined
via the partition function Z. So it is important to learn how to calculate the partition
function. In general, calculation of partition function of a thermodynamic system
is complicated due to the interactions between particles. In this section, we show
a few examples in the independent-particle approximation in which interactions are
ignored, using Eqs. (6)-(8) of the last section.

Example 1. The ideal spin-1/2 paramagnet. Only 2 energy states for each spin,
k1 =↑, ↓, with energies

ε↑ = −µB, ε↓ = +µB,
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where µ is the magnetic moment of one spin particle and B is the magnetic field. The
one-body partition function is therefore

Z1 =
∑

k1

e−εk1
/kBT = eµB/kBT + e−µB/kBT = 2 cosh(µB/kBT ).

The partition function for the N spins (distinguishable particles) is

ZN = [2 cosh(µB/kBT )]N . (10)

Example 2. A simple model for a one-dimensional solid consists of M independent
oscillators, each with energy

ε(x, p) =
p2

2m
+

1

2
mω2x2,

where ω is the angular frequency. The state of a classical particle is specified by
k = (x, p) and the sum becomes integral

∑

k

=
1

h

∫

dxdp,

as discussed in Chap. 3.5. The one-body partition function is therefore given by

Z1 =
∑

k

e−εk/kBT =
1

h

∫

dxdp e−ε(x,p)/kBT

=
1

h

∫ ∞

−∞
dpe−p2/2mkBT

∫ ∞

−∞
dxe−mω2x2/2kBT

=
1

h

√

2πmkBT

√

2πkBT

mω2
=

2πkBT

hω
,

where we have used the Gaussian integral
∫ ∞

−∞
e−ax2

dx =

√

π

a
, a > 0.

The partition function of M oscillators (distinguishable) is

ZM = (Z1)
M =

(

2πkBT

hω

)M

. (11)

Example 3. The classical ideal gas of N particles in a volume V . In this case, the
single particle energy is

ε(r,p) = ε(p) =
p2

2m
=

1

2m
(p2

x + p2
y + p2

z).
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The one-body partition function is

Z1 =
1

h3

∫

d3rd3p e−ε(p)/kBT .

As the energy ε(p) is r independent, the integral over real space produces a factor of
volume V and the integral over momentum is,

∫

d3p e−p2/2mkBT =
(∫ ∞

−∞
dpxe

−p2
x/2mkBT

)(∫ ∞

−∞
dpye

−p2
y/2mkBT

)(∫ ∞

−∞
dpze

−p2
z/2mkBT

)

=
√

2πmkBT ·
√

2πmkBT ·
√

2πmkBT = (2πmkBT )3/2,

where we have again used the Gaussian integral formula given above. The one-body
partition function is

Z1 = V

(

2πmkBT

h2

)3/2

(12)

and the partition function for a classical ideal gas of N identical molecules in a volume
V is

ZN =
1

N !
ZN

1 =
V N

N !

(

2πmkBT

h2

)3N/2

. (13)

Later, we will see the importance of the factor 1/N ! when we calculated thermody-
namic quantities such as energy, entropy, etc.

Example 4. The Einstein model of a one-dimensional solid. Revisit Example 2
above but now consider the oscillators are quantum mechanical. A single quantum
oscillator has energies

εn = h̄ω
(

n+
1

2

)

, n = 0, 1, 2, 3, . . . .

The one-particle partition function is

Z1 =
∑

n=0,1,2,···

e−εn/kBT = e−h̄ω/2kBT
∞
∑

n=0,1,2,···

e−h̄ωn/kBT

= e−h̄ω/2kBT 1

1 − e−h̄ω/kBT
=

1

2 sinh(h̄ω/2kT )
,

where in the third equation, we have used the formula

∞
∑

n=0

xn =
1

1 − x
.
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The partition function of M quantum oscillators is

ZM = (Z1)
M =

1

[2 sinh(h̄ω/2kBT )]M
.

We will see later the thermodynamics of quantum oscillators reduces to the classical
one in the high temperature limit but is completely different in the low temperature
limit.

In the next sections, we will discuss how to calculate energy, entropy and other
thermodynamic quantities from partition functions.

[Ref.: (1) Mandl 2.5; (2) Bowley and Sánchez 5.1-5.2]

4.4 The partition function and other state functions

Although the partition function, Z =
∑

i e
−Ei/kBT , has appeared just as a normaliza-

tion constant, its usefulness is much deeper than that. Loosely, whereas for an isolated
system (at fixed E,N, V ) all the thermodynamic properties S, T, P, · · · could be de-
rived from Ω(E,N, V ), as for a system in thermal equilibrium at temperature T the
same role is played by Z = Z(T,N, V ) for a hydrostatic system (or Z = Z(T,N,B)
for a magnetic system, etc.). In the last section we have calculated Z of several sys-
tems in the independent-particle approximation. Here we discuss in general how to
calculate other properties from Z.

First, we consider the energy E. The average energy 〈E〉 is calculated for the
canonical ensemble (with ν copies of the system and νi of these copies in the i-
microstate, recall Chap. 3.2) as

〈E〉 =
1

ν

ν
∑

λ=1

Eλ =
1

ν

∑

i

νiEi =
∑

i

piEi,

or

〈E〉 =
1

Z

∑

i

Eie
−Ei/kBT =

∑

iEie
−Ei/kBT

∑

i e
−Ei/kBT

,

As given by Eq. (3) in Sec. 4.1. Now, in this expression, the numerator can be
obtained from the denominator by differentiating the denominator with respect to
(−1/kBT ). That is a bit awkward, so let’s define

β ≡ 1

kBT
. (14)

Hence

〈E〉 =

∑

iEie
−Ei/kBT

∑

i e
−Ei/kBT

= − 1

Z

(

∂Z

∂β

)

N,V

,
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or, more formally

〈E〉 = −
(

∂ lnZ

∂β

)

N,V

= kBT
2

(

∂ lnZ

∂T

)

N,V

. (15)

Next, we consider entropy. Clearly, if the system is in a given (fixed) microstate
it has no entropy. Instead, we talk now about the entropy of the ensemble since the
many copies can be in many different microstates. So, let the ensemble have ν copies
of the system and the ensemble entropy, Sν = ν〈S〉, where 〈S〉 is the average system
entropy. Let the ensemble have νi copies in the ith microstate, so the total number
of ways of arranging this is

Ων =
ν!

ν1!ν2!ν3! · · ·
.

Use Stirling formula, we have

ln Ων = ν ln ν − ν −
∑

i

(νi ln νi − νi) =
∑

i

νi(ln ν − ln νi) = −
∑

i

νi ln
νi

ν
,

but pi = νi/ν,
ln Ων = −ν

∑

i

pi ln pi.

So, from Boltzmann’s formula: Sν = kB ln Ων and 〈S〉 = Sν/ν, we have system
entropy

〈S〉 = −kB

∑

i

pi ln pi. (16)

Let us now apply the general Eq. (16) to the case of a system in thermal equilib-
rium at a temperature T , where pi is given by the Boltzmann distribution of Eq. (1),

〈S〉 = −kB

∑

i

pi ln
e−βEi

Z
= −kB

∑

i

pi(−βEi − lnZ)

= kBβ
∑

i

piEi + kBZ
∑

i

pi = kBβ〈E〉 + kB lnZ

where we have used the definition 〈E〉 =
∑

i piEi and normalization condition
∑

i pi =
1. Rearrange the above equation

kBT lnZ = −(〈E〉 − T 〈S〉) = −〈F 〉
where F ≡ E − TS is the Helmholtz free energy. Hence we write

〈F 〉 = −kBT lnZ. (17)

The other thermodynamic quantities can then calculated by partial derivatives of F
as given in Chap. 2.

Summary of basic formulas for canonical ensemble
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• First calculate partition function

ZN =
∑

i

e−Ei/kBT . (18)

• Then the Helmhotz free energy

F = −kBT lnZN . (19)

• The entropy and equation of state are obtained by

S = −
(

∂F

∂T

)

V,N

; P = −
(

∂F

∂V

)

T,N

. (20)

• The internal energy can be calculated using

E = −
(

∂ lnZN

∂β

)

N,V

= kBT
2

(

∂ lnZ

∂T

)

N,V

, (21)

or simplely from
E = F + TS. (22)

In the above formulas, we have dropped the average notation 〈〉 for F,E and S. This
is because in the large N limit, the fluctuations around the average value very small,
typically proportional to 1/

√
N . In the next section we will discuss these fluctuations

for the energy 〈E〉.
Note:

(a) For magnetic systems the term −PdV is replaced by −mdB; and hence we have
m = −(∂F/∂B)T,N instead.]

(b) Equations (19)-(20) are very reminiscent of those we met in the case of an
isolated system in Chap. 3 (Eqs. (1)-(3)). Whereas the entropy S played a
central role for isolated systems, that role is now played by F for system in
contact with a heat bath. It is no real surprise that F is now the key state
function for system at fixed T , since that is just how it was introduced in
thermodynamics.

(c) In the independent-particle approximation discussed in Sec. 4.2, the partition
function can be written as

ZN

{

= (Z1)
N , distinguishable particles;

≈ 1
N !

(Z1)
N , indistinguishable particles,
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where Z1 is the one-body partition function. After taking log, we have

lnZN

{

= N lnZ1, distinguishable particles;
≈ N lnZ1 − lnN !, indistinguishable particles,

we have, for both the distinguishable and indistinguishable particles,

E = EN = −
(

∂ lnZN

∂β

)

N,V

= −N
(

∂ lnZ1

∂β

)

N.V

= NE1,

where E1 = −∂ lnZ1/∂β is the average energy of a single particle. Namely, in
the independent-particle approximation, the total internal energy of N particles
(distinguishable or indistinguishable) is equal to N times the average energy of
a single particle.

We have calculated the partition functions ZN for a number of systems in Section
4.3. Using Eqs. (19)-(21), it is straightforward to calculate other thermodynamic
quantities. In the rest of the chapter we will do just that and also discuss the physical
implications of our results.

[Refs.: (1) Mandl 2.5; (2) Bowley and Sánchez 5.3-5.6.]

4.5 The energy fluctuations

In this section we will focus on the energy fluctuations and show it is small in the
large N limit. From 〈E〉 we can calculate heat capacity

〈CV 〉 =

(

∂〈E〉
∂T

)

N,V

= kBβ
2

(

∂2 lnZ

∂β2

)

N,V

. (23)

〈E〉 in canonical ensemble is only known as an average. It will also statistically
fluctuate. We can also examine the fluctuations, and see how big they are. We define

(∆E)2 ≡ 〈E2〉 − 〈E〉2.

Clearly

〈E2〉 =

∑

iE
2
i e

−βEi

∑

i e−βEi
=

1

Z

(

∂2Z

∂β2

)

N,V

.

Hence, (all derivatives in the followings are at constant N, V )

(∆E)2 =
1

Z

∂2Z

∂β2
−
(

− 1

Z

∂Z

∂β

)2

=
∂

∂β

(

1

Z

∂Z

∂β

)

=

(

∂2 lnZ

∂β2

)

N,V

= −
(

∂〈E〉
∂β

)

N,V

= −
(

∂〈E〉
∂T

)

N,V

dT

dβ
= kBT

2〈CV 〉.
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or

(∆E)2 =

(

∂2 lnZ

∂β2

)

N,V

= kBT
2CV . (24)

Note: For a normal macroscopic system 〈E〉 ∝ NkBT , and CV ∝ NkB, hence

∆E

〈E〉 ∝
√
NkBT

NkBT
=

1√
N
.

So, if N ≈ 1024, ∆E/〈E〉 ≈ 10−12, an unobservable tiny number! So, for most
normal macroscopic systems the fluctuations are totally negligible and we can forget
the notation 〈〉, and write 〈E〉 → E, 〈CV 〉 → CV , etc., and there is no real difference
between an isolated system of fixed energy E and one in contact with a heat bath at
the same temperature T = (∂E/∂S)N,V .

[Note: A notable exception occurs near critical points, where the distinction be-
tween 2 phases disappears, Near critical points 〈CV 〉 can be very large and the fluctua-
tions may not be negligible. This can sometimes be observed as ”critical opalescence”
where the meniscus between the liquid and gas phases disappears, and the mixture
becomes milky-looking and opaque as it scatters light.]

[Ref.: (1) Mandl 2.5]

4.6 Example: The ideal spin-1/2 paramagnet

Now we revisit the problem of the ideal spin-1/2 paramagnet at fixed temperature.
We consider N spins in a magnetic field B. Each spin has only two states, either up
with energy (ε↑ = −µB) or down with energy (ε↓ = +µB).

From Sec. 4.3, the partition function of the paramagnet is calculated as

ZN = (Z1)
N = [2 cosh(βµB)]N , lnZN = N ln (2 cosh(βµB)] ,

where β = 1/kBT . We can now calculate the total average energy easily using Eq. (21)

E = −∂ lnZN

∂β
= − N

cosh(βµB)
· sinh(βµB) · (µB),

hence

E = −NµB tanh
µB

kBT
. (25)

The heat capacity at constant magnetic field is calculated as

CB =

(

∂E

∂T

)

B

= −NµBsech2 µB

kBT
·
(

− µB

kBT 2

)

= N
µ2B2

kBT 2
sech2 µB

kBT
, (26)
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where we have used d
dx

tanhx = sech2x, and sechx ≡ 1/ coshx.
We can plot E and CB as function of T using the fact that, as x→ 0, sinh x→ x

and cosh x → 1; and as x → ∞, sinh x → ex/2 and cosh x → ex/2. Hence, from
Eq. (25)

E → −NµB, T → 0

just as expected, since all spins will be in lowering energy spin-up state. On the other
hand, tanh x→ x as x→ 0, hence

E → −Nµ
2B2

kBT
, T → ∞

again, as expected since as T → ∞, the number of up spins and down spins become
nearly equal and their energies cancel each other out. These behaviors are shown in
Figure 2.

Figure 2

We can similarly plot CB. From Eq. (26), in the limit T → 0 (β → ∞),

CB → NkB(µBβ)24e−2µBβ = NkB

(

2µB

kB

)2 1

T 2
e−2µB/kBT

or, using the fact that exponential → 0 faster than 1/T 2 → ∞,

CB → 0, T → 0.

This behavior, which is quite general, is also easy to understand. Thus, at low T ,
thermal fluctuations that flip a spin are rare → very difficult for the system to absorb
heat. Quantization of energy levels → there is always a minimum excitation energy
for any system, and hence, if T is low enough, the system can’t absorb heat.

16



Figure 3
Low-T High-T

At the opposite limit,

CB → Nµ2B2

kB

1

T 2
, T → ∞.

The high T behavior arises because n↓ is always smaller than n↑. As T → ∞, n↓

approaches n↑ and raising T even higher makes no difference, i.e., the system has no
further capacity to absorb heat. However, this behavior is not universal, since most
systems have an infinite number of energy levels of higher and higher energies. Hence
in general there is no max. energy and the heat capacity won’t fall to zero in the
high-T limit. In our case, it is pictorially shown in Figure 3. We sketch the behaviors
of CB as a function of T in Figure 4.

Figure 4
The Helmholtz free energy is calculated as, using Eq. (19)

F = −kBT lnZN = −NkBT ln
(

2 cosh
µB

kBT

)

.

The entropy and magnetization are calculated by Eqs. (20)

S = −
(

∂F

∂T

)

B,N

, m = −
(

∂F

∂B

)

T,N

.
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Hence, for the entropy

S = NkB{ln[2 cosh(βµB)] − βµB tanh(βµB)}. (27)

Consider the limits:

(i) T → 0 (or β → ∞)

S → NkB{ln[2 × 1

2
eβµB] − βµB · 1} → 0, T → 0

which is as expected, since as T → 0 all spins are up, i.e. no disorder!

(ii) T → ∞ (or β → 0)

S → NkB{ln 2 − (βµB)2} → NkB ln 2

again, as expected, since as T → ∞, the spins are equally likely to be up or
down, entropy per spin is kB ln 2 as we have seen in Chap. 3.

The net magnetic moment is given by,

m = −
(

∂F

∂B

)

T,N

= Nµ tanh(βµB) = −E
B

as expected, since E = −mB is the equation of state for the ideal paramagnet. The
limits:

(i) T → 0 (or β → ∞)
m→ Nµ

for all spins are up; and

(ii) T → ∞ (or β → 0)

m → Nµ2B

kBT
, Curies′s law

→ 0

again, as expected, since nearly equal number of up and down spins.

We plot S and m versus T for several different external fields as shown in Figure 5.

18



Figure 5
Note: As we have seen above, the entropy S → 0 as T → 0 as all spins align.

This is generally true, namely, a system has no disorder in the limit of T → 0. This
is the third law of thermodynamics:

The entropy of any system S → 0 as T → 0.

In the next section, we discuss a way to reach low temperature limit using paramag-
nets.

[Refs.: (1) Mandl 3; (2) Bowley and Sánchez 5.7.]

4.7 Adiabatic demagnetization and the third law of thermo-
dynamics

By magnetizing and demagnetizing a paramagnet sample, while controlling the heat
flow, we can lower its temperature. Thus, referring to the above S vs. T curves for
the ideal paramagnet:

Figure 6
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Start with sample in magnetic field B1 at an (already fairly low) temperature T1.

• Step 1: isothermal magnetization: increase the field from B1 → B2 at
constant T (i.e., in contact with heat bath). Entropy S hence decreases as
spins align in stronger field (i.e., more ordered).

• Step 2: adiabatic demagnetization: now isolate the system and demagnetize
(i.e., reduce B from B2 → B1). ∆Q = 0, and if the process is quasistatic and
reversible, ∆S = 0. From the plot we see T reduces T1 → T2; or from Eq. (15)
S is a function of B/T only, hence for constant S and B reduces, T must reduce
by a same factor.

The figures below show what happens to the spins:

(a) Start (b) Step 1 (c) Step 2

In the step 1, we increase the level spacing but keep T constant; population of upper
level falls. In step 2 we reduce the level spacing again, but as the process is now
adiabatic (spins isolated) there is no change in level occupations, the temperature is
lowered.

This is actually a practical way to reach quite low temperatures, to small fractions
of 1 K. If we start with a large sample we could repeat the process with a small sub-
sample, with rest acting as a heat bath. However at each repeat of Steps 1 and 2 we
would reduce the temperature by less and less, as the curves come together as T → 0.
Thus it is impossible to reach T → 0 in a finite number of steps in this way.
This is just one example of the third law of thermodynamics: namely, either

(a) absolute zero is unattainable (in a finite number of steps) or, more precisely,

(b) The entropy of any aspect of any system, S → 0 as T → 0.

Note: The (b) statement implies that the ground state is non-degenerate so that all
particles fall into the same state as T → 0.

[Ref.: (1) Mandl 5.6.]

20



Thus, we can colloquially state:

The laws of thermodynamics

1. Yon can’t win, you can only break even at best

2. You can only break even at T = 0

3. You can’t attain T = 0

Even more snappily, and slightly more cryptically:

The laws of thermodynamics (as played in Monte Carlo)

1. Yon can’t win!

2. You can’t even break even!

3. You can’t leave the game!
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4.8 Example: The classical ideal gas

Now it is time to revisit the ideal gas we discussed often in thermodynamics. We
hinted before that it would be a challenge problem using microcanonical ensemble
approach. We will show that this is not the case using canonical ensemble approach.

We have calculated the partition function of classical ideal gas of N identical
molecules at fixed temperature T in a volume V as, Eq. (12)-(13),

ZN =
1

N !
ZN

1 =
V N

N !

(

2πmkBT

h2

)3N/2

,

hence, using Stirling approximation, N ! ≈ (N/e)N ,

lnZN = N ln



e
V

N

(

2πmkBT

h2

)3N/2


 (28)

Now we follow the standard calculations of canonical ensemble to obtain other
thermodynamic quantities. The Helmholtz free energy is obtained from Eq. (19)

F = −kBT lnZN = −kBTN

[

3

2
ln

(

2πmkBT

h2

)

+ ln
V

N
+ 1

]

. (29)

Note: If we did not include the 1/N ! factor in ZN , the second term in Eq. (29) would
be lnV instead of the intensive quantity ln(V/N), and F would not be extensive as
required.

The entropy is calculated as, according to Eq. (20),

S = −
(

∂F

∂T

)

V,N

= kBN

(

3

2
ln

2πmkBT

h2
+ ln

V

N
+

5

2

)

, (30)

which can be compared with Q2(a) of Example Sheet 5

S = kBN
(

3

2
ln
T

T0
+ ln

V

V0

)

+ const.

Eq. (30) is referred as Sackur-Tetrode equation. It gives absolute value of the entropy
of a gas at a given temperature T . (See Q2 of Example Sheet 11 for more details).
Apart from the factor m of atomic mass, it is the same for every substance. At high
enough temperature and low enough densities all substances behave as ideal gases,
and so the Sackur-Tetrode formula can be checked experimentally. Good agreement
is found.
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The equation of state is obtained by Eq. (20) for pressure,

P = −
(

∂F

∂V

)

T,N

= kBTN · 1

V

or, the familiar formula
PV = NkBT. (31)

The internal energy of an ideal gas can be calculated by partial derivative of
Eq. (21), or simply from F = E − TS of Eq. (22)

E = F + TS =
3

2
kBNT, (32)

which is independent of volume V as expected. The heat capacity at constant volume
is

CV =

(

∂E

∂T

)

V

=
3

2
kBN.

Note: The entropy S of Eq. (30) has wrong low-T behavior as S → −∞ in the
limit T → 0, in conflict with the 3rd law which states S → 0 in the limit T → 0.
Two reasons for the problem:

(a) We have ignored interactions between particles when calculating partition func-
tion ZN ; these interactions are responsible for the particles condensing into
liquids or forming solids at low temperature.

(b) We have also ignored quantum effects (significant at low temperature) when we
considered the properties of indistinguishable particles by assuming particles are
in different single-particle state (hence the over-counting factor is simple N !).
The quantum effect of many particles in the zero-momentum state is responsible
for the Bose-Eisntein condensation.

Inclusion either of the above two effects will result correct low temperature behavior
for the entropy. More detailed discussion for validity of the classical ZN above is given
by Mandl 7.3.

4.9 Vibrational and rotational energy of diatomic molecules

In the last section we consider the classical ideal gas of N particles. If these particles
are diatomic molecules, in additional to the translational motion for the center-of-
mass of a molecule, there are also vibrational and rotational motions. We consider

23



these three motions are independent of one another, hence write the partition function
of N diatomic molecules as

ZN =
1

N !
(Z1)

N , Z1 = Zt
1Z

v
1Z

r
1 (33)

where Zt
1 is the one-body partition function of translational motion, given by Eq. (12),

Zv
1 is that of vibrational motion, and Zr

1 is that of rotational motion. Here we consider
Zr

1 and Zr
1 by quantum treatment.

Vibrational energy contribution. The energy levels of a quantum simple har-
monic oscillator of angular frequency ω are

εn =
(

n +
1

2

)

h̄ω, n = 0, 1, 2, · · · .

Hence, the one-body partition function is the same as calculated by Eq. (14) as

Z1 =
∞
∑

n=0

e−(n+1/2)h̄ωβ =
1

2 sinh(h̄ωβ/2)
.

Hence, the vibrational energy per molecule at temperature T is

Ev

N
= −

(

∂ lnZ1

∂β

)

=
1

2 sinh(h̄ωβ/2)
· 2 cosh(h̄ωβ/2) · (h̄ω/2)

or
Ev

N
=

1

2
h̄ω coth(h̄ωβ/2). (34)

The two temperature limits:

(i) T → 0 (β → ∞), coth(h̄ωβ/2) → 1

Ev

N
→ 1

2
h̄ω,

just the zero-point energy;

(ii) T → ∞ (β → 0), coth(h̄ωβ/2) → 2
h̄ωβ

,

Ev

N
→ 1

β
= kBT.
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Note: For most diatomic molecules, the high-T limit is reached for T ≥ 1000 K.

Rotational energy contribution. In classical mechanics the energy of a rigid rotor
with moment of inertia I, rotating with angular velocity ω (or angular momentum
L = Iω) is ε = Iω2/2 = L2/2I. In quantum mechanics, the angular momentum is
quantized as

L2 → l(l + 1)h̄2, l = 0, 1, 2, · · ·
and hence the energy levels are

εl =
l(l + 1)h̄2

2I
, l = 0, 1, 2, · · · .

Also, for each eigenvalue l we have g(εl) = (2l + 1) degenerate magnetic sublevels,
specified by quantum number ml = −l,−l + 1, · · · , l − 1, l, all with same energy εl.
Hence the one-body partition function is

Zr
l =

∞
∑

l=0

(2l + 1)e−l(l+1)h̄2β/2I . (35)

For general β, we can not specify the above Z1 further. However, we can look at the
low- and high-T limits as follows:

(a) T → 0 (β → ∞), for a good approximation, keeping only the first two terms,

Z1 → 1 + 3e−h̄2β/I

and the rotational energy per molecule is

Er

N
→ 0.

(b) T → ∞ (β → 0). In this limit (kBT � h̄2/2I) there are many thermally
accessible energy levels, and the discrete series can be well approximated by a
continuum, i.e.,

Zr
1 →

∫ ∞

0
dl(2l + 1)e−l(l+1)h̄2β/2I

and luckily this integral can be exactly evaluated by making the substitution
x = l(l + 1) and dx = (2l + 1)dl. And we obtain

Zr
1 → 2I

h̄2β
=

2IkBT

h̄2 . (36)
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and the rotational energy per molecule, using Er

N
= − ∂

∂β
lnZr

1

Er

N
→ 1

β
= kBT, T → ∞. (37)

For details, see Example Sheet 10. Note: For typical diatomic molecules,
h̄2/2I ≈ 10−3 eV, and so the high-T limit is reached well below room tem-
perature.

Translational energy contribution. From Eq. (32) of Sec. 4.8, we have the
translational energy per molecule as

Et

N
=

3

2
kBT. (38)

We obtained this result using classical mechanics approach. In the next section we
obtain the same result using quantum treatment.

We will see later in Sec. 4.11 that it is no accident that there is a simple relation
between energies per molecule in the high-T limit for these three motions. They are
examples of the more general equipartition theorem.

[Refs.: (1) Bowley and Sánchez 5.11, 5.12.]

4.10 Translational energy of molecules: Quantum treatment

We have calculated the one-body partition function and the energy for the transla-
tion motion of N particles, using classical mechanics approach. Here we repeat the
calculation using quantum mechanics. We will see that Z1 is the same as classical
result.

Consider a single free particle (acted on by no forces, potential V = 0), contained
in a box of lengths Lx, Ly, Lz with sides parallel, respectively to the x, y, z axises. Its
wavefunction ψ = ψ(x, y, z) satisfies the free Schrödinger equation inside the box

− h̄2

2m
∇2ψ(x, y, z) = Eψ(x, y, z).

We assume the box is impenetrable so that ψ vanishes everywhere on the boundaries
of the box and outside it. The Schrödinger equation with this boundary condition is
easily seen to be satisfied by the solution

ψ(x, y, z) =

{

A sin
(

nxπx
Lx

)

sin
(

nyπy
Ly

)

sin
(

nzπz
Lz

)

, inside box;

0, outside box,
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where nx, ny, ny = 1, 2, · · · and A is a normalization constant. The corresponding
energy eigenvalues are E = εnx,ny,nz

εnx,ny,nz
=





(

nxπ

Lx

)2

+

(

nyπ

Ly

)2

+
(

nzπ

Lz

)2




h̄2

2m
≡ h̄2k2

2m
,

where k2 = k2
x + k2

y + k2
z and kx = nxπ/Lx, ky = nyπ/Ly and kz = nzπ/Lz. Hence,

the one-particle partition function for this free translational motion is

Zt
1 =

∞
∑

nx=1

∞
∑

ny=1

∞
∑

nz=1

e−βεnx,ny,nz .

This sum can be further evaluated only in the limit kBT � h̄2π2/2mL2, the energy
level spacing. Even for L = 1 cm, m = mH (hydrogen mass), h̄2π2/2mL2 ≈ 2×10−18

eV, a truly tiny energy, and for all attainable temperature the condition kBT �
h̄2π2/2mL2 always satisfies. Thus, for all macroscopic boxes and even at the lowest
temperature ever reached, we can replace the sums by integrals. Putting nx = kxLx/π,
etc., we replace

∞
∑

nx=1

· · · →
∫ ∞

0

Lx

π
dkx · · · ,

etc. We rewrite Z1 as

Zt
1 =

Lx

π

Ly

π

Lz

π

∫ ∞

0
dkx

∫ ∞

0
dky

∫ ∞

0
dkze

−βε(k) =
V

8π3

∫

d3ke−βε(k),

where V = LxLyLz and ε(k) ≡ h̄2k2/2m. Rewrite the above equation as

Zt
1 =

V

(2π)3

∫

d3ke−βε(k), ε(k) ≡ h̄2k2

2m
. (39)

Furthermore, in spherical coordinates d3k = k2dk sin θdθdφ, we rewrite Eq. (21), after
integration of the angles to yield 4π,

Zt
1 =

∫ ∞

0
dkD(k)e−βε(k), D(k) =

V k2

2π2
, (40)

where D(k) is usually referred to as density of states in k-space, i.e., D(k)dk is the
number of states within the spherical shell from k → k + dk.

Finally, we can insert ε(k) = h̄2k2/2m and evaluate the integral of Eq. (40).

Substitute k =
√

2m/βh̄2x,

Zt
1 =

V

2π2

(

2m

βh̄2

)3/2
∫ ∞

0
dxx2e−x2

= V

(

m

2πβh̄2

)3/2

, (41)
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where we have used Gaussian integral

∫ ∞

0
x2e−x2

dx =

√
π

4
.

From Zt
1 we can calculate the average energy per molecule

Et

N
= −∂ lnZt

1

∂β
=

3

2

1

β
=

3

2
kBT,

same as Eq. (32) by classical approach. This is not surprising as we have taken the
continuous limit (converting the summations into integrals). The discrete nature of
the energy levels will show up only at temperature T < h̄2/(kBmV

2/3) ≈ 10−14 K.
Note: (a) In Eq. (40), D(k) acts for the continuum k-variable like the degeneracy

factor g(εk) in the discrete εk-variable in the discrete sum for Z1 of Eq. (9). (b) We
want to emphasize that although quantum mechanical Z1 obtained here is the same
as classical result shown earlier, the formula for the total partition function

ZN =
1

N !
ZN

1

is the classical approximation. Namely we have ignored the quantum effects of many-
body systems.

[Refs.: (1) Mandl 7.1-7.3,; (2) Bowley and Sánchez 5.9,7.2.]

4.11 The equipartition theorem

The last three results (for vibrational, rotational and translational motion) provide
examples of the equipartition theorem: for each degree of freedom of a system
with an energy which is quadratic in either the coordinate or the momentum, the
average energy is kBT/2 and its contribution to the heat capacity is kB/2, at high
enough temperatures. Here are the examples we have discussed earlier:

• vibrations:

Evib =
1

2
mẋ2 +

1

2
kx2

2 quadratic d.o.f. → E → kBT as T → ∞.

• rotations: 2 perpendicular axes about which it can rotate,

Erot =
1

2
I1θ̇

2
1 +

1

2
I2θ̇

2
2

2 quadratic d.o.f., hence E → kBT as T → ∞;
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• translations:

Etr =
1

2
m(ẋ2 + ẏ2 + ż2)

3 quadratic d.o.f., hence E → 3kBT/2 as T → ∞.

The equipartition theorem is a classical theorem. From our present statistical
mechanics treatment we see it breaks down when the separation between energy
levels is small compared with kBT . If this happens the heat capacity of this d.o.f.
will be reduced, dropping to zero at low temperatures. The corresponding d..o.f.
is then said to be frozen out; e.g., this is typically the situation for the vibrational
degrees of freedom at room temperature. More specifically, equipartition holds

• for vibrations, when T � h̄ω/kB ≈ 103 K;

• for rotations, when T � h̄2/IkB ≈ 10 − 100 K;

• for translations, when T � h̄2/(mV 2/3kB) ≈ 10−14 K.

Thus, at room temperature, only the rotational and translational degrees of freedom
can be treated classically, giving CV = 3R/2 for monatomic gases and Cv = 5R/2 for
diatomic gases, for the molar heat capacity. The following diagram is an example for
a diatomic gas (e.g., H2).

Figure 8
We can predict the heat capacities of other substances using equipartition, simply

by counting the quadratic degrees of freedom. An example is a solid, for which we
expect the molar heat capacity to be 3R since each atom is free to to vibrate in 3
directions. This is the Dulong-Petit law, which works well for many solids at room
temperature

Note: Equipartition only hods for quadratic degrees of freedom. An example is
for an ultra-relativistic gas, for which ε = cp = ch̄k, is linear (instead of quadratic).

Two important points:
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(a) T → 0, quantum effects dominate. In fact, for all quantum systems including
quantum gases, CV → 0 as T → 0, consistent with the 3rd law of thermody-
namics.

(b) We only discussed energy per molecule and specific heat here using the equipar-
tition theorem and avoided discussing other properties such as entropy or equa-
tion of state which require the full N -body partition function ZN (and the
property of identical particles matter).

[Refs.: (1) Mandl 7.9; (2) Bowley and Sánchez 5.14.]

4.12 The Maxwell-Boltzmann velocity distribution

In this section we derive the Maxwell-Boltzmann velocity distribution for an ideal
classical gas you have learned in your year one module.

Consider a gas of N molecules in a volume V , in thermal equilibrium at a tem-
perature T . From Boltzmann distribution function, the probability of an average
molecule in the state (r,p) is

p(r,p) =
1

Z1

e−ε(r,p)/kBT

where ε(r,p) is the energy of the a single molecule at state (r,p). The average number
of molecules at state (r,p) inside the volume d3rd3p/h3 is then given by

Np(r,p)
d3rd3p

h3

The Maxwell-Boltzmann velocity distribution function f(v) is obtained by setting
translational energy ε(r,p) = p2/2m with p = mv, and integrating over spatial dr

and solid angle sin dθdφ of the momentum as

f(v)dv =
Nm3

Z1h3

∫

d3r
∫

sin θdθdφe−mv2/2kBTv2dv =
Nm3V

Z1h3
e−mv2/2kBTv2dv,

hence

f(v) =
Nm3V

Z1h3
v2e−mv2/2kBT .

Using the result

Z1 = V

(

mkBT

2πh̄2

)3/2

,
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we have

f(v) = N

√

2

π

(

m

kBT

)3/2

v2e−mv2/2kBT . (42)

Notice the normalization ∫ ∞

0
f(v)dv = N.

We can also define distribution function for an average particle as P (v) = f(v)/N
and the normalization equation is

∫ ∞

0
P (v)dv = 1.

This is the well-known Maxwell-Boltzmann velocity distribution. We plot distribution
P (v) of Eq. (42) in Figure 9.

Figure 9
A few physical quantities are calculated as follows.

• most probable speed: let vp be the point of maximum P (v), i.e., dP/dv = 0

d

dv

(

v2e−mv2β/2
)

= 0 → (2v − v2mvβ) = 0

we have

vp =

√

2kBT

m
≈ 1.41

√

kBT

m
. (43)

• mean speed:

〈v〉 =
∫ ∞

0
v · P (v)dv =

√

2

π

(

m

kBT

)3/2 ∫ ∞

0
v3e−mv2/2kBTdv

=

√

8kBT

m
≈ 1.60

√

kBT

m
. (44)
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• rms speed:

〈v2〉 ≡ v2
rms =

∫ ∞

0
v2 · P (v)dv =

√

2

π

(

m

kBT

)3/2 ∫ ∞

0
v4e−mv2/2kBTdv

= 3
kBT

m
,

or

vrms =

√

3kBT

m
≈ 1.73

√

kBT

m
. (45)

These three speeds are marked in Figure 9.
From Eq. (45) we have

E1 =
1

2
〈mv2〉 =

1

2
mv2

rms =
m

2
· 3kBT

m
=

3

2
kBT,

consistent with equipartition theorem. Note also that h̄ has disappeared from the
Maxwell-Boltzmann distribution of Eq. (42), which is why it can be also found from
classical kinetic theory, as was done originally by Maxwell.

Note: In the above integrals, we have used the following general Gaussian integral

∫ ∞

0
x2ne−ax2

dx =
1 · 3 · 5 · · · (2n− 1)

2n+1an

√

π

a
.

[Refs.: (1) Mandl 7.7; (2) Bowley and Sánchez 7.4.]

4.13 What is next?

So far, we have completely ignored interactions between constituent particles in all of
our examples, from the ideal spin-1/2 paramagnets to the classical ideal gases. How
do we go from here and what is next in the physics of statistical mechanics? Clearly,
investigation of the effects due to, for example, interactions between molecules of
a gas is the next main task. In fact, the most interesting physics emerges from
such interactions, examples are phase transitions from gases to liquids or solids as
temperature is lower, and even to superfluids or superconductors at extremely low
temperatures where quantum physics dominates.

Another major neglect is the quantum effects of many particles (bosons) occupy-
ing the same single-particle state (particularly the zero-momentum state) when we
discussed the independent-particle approximation for identical particles. Such effects
are important in the low temperature limit and inclusion of such quantum effects will
result in the Bose-Einstain condensation. These effects are much easier to handle and
they are covered in a thir-year course, Bosons and Fermions.
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The difficult problem is the inclusion of interactions between particles. Amazingly,
we have most of the fundamental formulas needed for all such further investigation,
although some special techniques will be required. Let’s do a little demonstration to
complete our Thermal and Statistical Physics.

We consider a gas of N identical, classical molecules. These molecules interact
with one another, and the interaction is described by a pair-wise interaction potential,
V (r), where r is the separation between the interacting pair. We draw a typical V (r)
in Fig. 10. Qualitatively, we see the interaction potential consists of a hard-core
(molecules repel each others strongly when they are very close) and an attractive
tail which is responsible for condensation into liquids and formation of solids at low
temperature.

In Chap. 1.3, we have qualitatively discussed the effects due to this interaction to
the equation of state, the so-called van der Waals equation,

(

P +
αN2

V 2

)

(V −Nβ) = NkBT,

where α and β are coefficients depending on the interaction potential. This empirical
equation of van der Waals in fact provides a good description of a dense gas (recall
that an ideal gas corresponds to dilute gas where interactions can be ignored) and it
also predicts a phase transition from gas to liquid phase.

Fig. 10 A schematic diagram for the interaction potential between
two molecules.

One of the tasks in statistical mechanics is to derive this van der Waals equation
from, say, canonical ensemble approach. In canonical-ensemble approach, as discussed
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earlier, we first need to calculate the partition function of N molecules

ZN =
∑

i

e−εi/kBT ,

where, as we mention before, summation over microstate index i for N classical
molecules corresponds to the integral in 6N -dimensional phase-space

∑

i

=
1

N !

1

h3N

∫

d3r1d
3p1

∫

d3r2d
3p2 · · ·

∫

d3rNd
3pN ,

with the factor 1/N ! due to the property of identical particles. The energy εi is then
the classical Hamiltonian (total energy) of interacting N molecules

H = H(r1, r2, . . . ;p1,p2, . . .) = K + U ;

K =
p2

1

2m
+

p2
2

2m
+ · · ·+ p2

N

2m
=

N
∑

k=1

p2
k

2m
,

U = V (|r1 − r2|) + V (|r1 − r3|) + · · · =
∑

k<l

V (|rl − rk|)

where K is the total kinetic energy, U the total potential energy. Hence, the partition
function of the gas is written as

ZN =
1

N !

1

h3N

∫

d3r1d
3p1

∫

d3r2d
3p2 · · ·

∫

d3rNd
3pNe

−(K+U)/kBT .

We notice, contrast to the case of an ideal gas, the above multi-dimensional integral
is NOT separatable, due the coupling terms in the potential U between molecular
coordinates r1, r2, . . . , rN. (The kinetic energy term K is still separatable, hence the
integrals over momenta p1,p2, . . . ,pN are still separatable. Can you prove this?).
Special techniques have been developed to evaluate this multi-dimensional integral.
One of such techniques is the so-called cluster-expansion for the factor e−U/kBT . Cor-
rections to the ideal gas equation of state can then be evaluated. We will stop here.
For those who are interested, a good but very advanced reference book (postgraduate
text book) is by K. Huang, Statistical Mechanics.
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Lecture Cancellation

Lecture on Thursday, 2:00 pm, 01 May 2008 is can-
celed. Please study the last section Sec. 4.10 (avail-
able on line). Last lecture on Thursday, 08 May will
focus on revision.
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