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4.1 Born-Oppenheimer approximation and electron

terms

Consider a general many-body Hamiltonian of a molecule

Ĥ = Ĥe + Ĥn + Ĥen,

where Ĥe is the Hamiltonian of many-electrons in the molecule, Ĥn is that of nuclei,
and Ĥen describes the interaction potential between the two subsystems. As nuclear
mass is much larger (about 2000 times larger) than electron mass, it is a good ap-
proximation to ignore nuclear’s motion and focus on the dynamics of electrons for
given nuclear configuration.

We use general coordinate x = (x1, x2, ...) for all electrons (spatial and spin coor-
dinates) and X = (X1, X2, ...) for all nuclei’s. The total wavefunction of a molecule
is separatable as

Ψ(x,X) = Ψe(x,X)Ψn(X) .

If we approximate ĤnΨe(x,X) ≈ Ψe(x,X)Ĥn (the noncommuting kinetic part is
proportional to 1/M , where M is nuclear mass), we have separatable Schrödinger
equations, namely

(Ĥe + Ĥen)Ψe(x,X) = EΨe(x,X), E = E(X)

for electrons motion with nuclei’s coordinates X as parameters, and

[Ĥn + E(X)]Ψn(X) = EnΨn(X)

for the nuclei motion. This is called Born-Oppenheimer approximation. Notice
that E = E(X) plays a role of potential in the nuclei Schrödinger equation. Unlike
QM of atoms, where energy levels are certain numbers, energy levels E(X) here are
not numbers but functions of parameters X, or the distances between the nuclei in
the molecule. We also refer these energy levels E(X) as electron terms for the
molecule, as they reflect the symmetries of the molecular structures. Electron terms
of diatomic molecules are functions of only one parameter, the distance R between
two nuclei.

The atomic states are represented by spectral terms (2S+1)LJ . The classification
of atomic terms is according to the values of the total orbital angular momentum
L as discussed in Chapter 2. In molecules, there is no law of conservation for total
angular momentum because electric field of several nuclei is not centrally symmetric.
However, for diatomic molecules, the field has axial symmetry about an axis passing
through two nuclei, hence its angular momentum component is conserved. We can
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therefore classify molecular energy levels according to values of this component. The
quantum number for this orbital angular momentum component is usually denoted
as Λ. For Λ = 0, 1, 2..., the notation of electron terms are Σ,Π,∆, ... etc. The total
spin is denoted as upper-left index as

(2S+1)Λ .

For example, 3Π denote an energy state of the molecule with Λ = 1 and S = 1.
There is also reflection symmetry about the axis ±, and notation (2S+1)Λ±. For

diatomic molecule of two similar atoms, there is another symmetry at the center point
bisecting the line joining the two nuclei, the parity symmetry (Hamiltonian remains
unchanged if all electrons coordinates change sign). Even wavefunction denotes by g
and odd denoted by u. The electron terms for such diatomic molecules are denoted
as (2S+1)Λ±

u,g. We will mainly study diatomic molecules in this chapter.

4.2 Molecular orbitals

As stated in Born-Oppenheimer approximation, we will try to solve Schrödinger equa-
tion for electrons in a molecule for a given nuclei configuration, i.e., ignoring nuclear
kinetic energy. A practical approach will be to use atomic wavefunctions of each atom
in the molecule. For the ground state and low-lying excitation states, a linear combi-
nation of atomic ground states associated with each nucleus will be a good starting
point. Such states are often referred to as molecular orbitals. We will use the
variational method discussed in Chapter 3 to obtain approximations for the ground
state and ground-state energy of a molecule.

Consider a trial wavefunction Ψ as given by a linear combination of atomic orbitals
ψi (i = 1, 2, · · ·) with index i denoting different nuclei,

Ψ =
∑

i

ciφi ,

where ci are parameters (assumed real) to be determined by variational method for
a given molecular Hamiltonian Ĥ . Introducing two special integrals,

Hij ≡ 〈φi|Ĥ|φj〉 , Sij ≡ 〈φi|φj〉 ,

where Hij is referred to as Hamiltonian matrix and Sij the overlap integrals. The
energy expectation is given by

E = 〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

∑

i,j cicjHij
∑

i,j cicjSij

.
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Variational equations ∂E/∂ck = 0 is derived as

∂E

∂ck
=

∑

j cjHkj +
∑

i ciHik
∑

i,j cicjSij
−
(

∑

j cjSkj +
∑

i ciSik

)

∑

i,j cicjHij
(

∑

i,j cicjSij

)2

=

∑

j cj [Hkj − ESkj] +
∑

i ci [Hik − ESik]
∑

i,j cicjSij

= 0 ,

where in the last equation, we have used the expression for E. This is satisfied if each
term in the numerator vanishes,

∑

i

ci [Hik − ESik] = 0 .

The condition for existence of solutions is that the secular determinant should be zero

det |Hik − ESik| = 0 .

Therefore, the basic procedure in molecular calculations is to first calculate the Hamil-
tonian matrix Hik and overlap integrals Sik, and then to diagonalize the above secu-
lar determinant to obtain eigenvalues E and the coefficients ci. We will discuss the
simplest case H+

2 first in the next section and then use its solutions to discuss the
structures of other diatomic molecules. The basic strategy is similar to that employed
in atomic physics discussed in Chapter 2.

4.3 Hydrogen molecular ion

In order to study a diatomic molecule, we first consider hydrogen molecular ion H+
2 ,

namely, one electron moving in the field of two protons. This strategy is similar to
atomic QM, where we first first study hydrogen atom and use its wavefunctions as
basis for other atoms. Using Born-Oppenheimer approximation, let two protons fixed
at positions ±R/2, the single electron eigenequation becomes

(

− h̄2

2m
∇2

r −
e2

4πǫ0|r −R/2| −
e2

4πǫ0|r + R/2| +
e2

4πǫ0R

)

ψ(r,R) = E(R)ψ(r,R) ,

where the 2nd and 3rd terms are attractive interactive between the electron and the
two protons and the last term (constant) is the repulsive interaction between two
protons. These two contributions combine to give total energy with a minimum at
an equilibrium position R0 (the size of the molecule), as shown in Fig. 1. Qualita-
tively, we can understand the energy curve as in the following argument. At large
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separation R → ∞, the electron will be bound to one of nucleus, the energy is about
−13.6 eV. When R → 0, the electron will be bound to Z = 2 nucleus with energy
−13.6Z2 = −54.4 eV plus nuclear repulsion energy which goes to infinity as R → 0.
The equilibrium minimum energy E(R0) is between these two positions.

Fig. 1 Hydrogen ion energy as a function of separation of the two protons.

We follow the procedure as discussed in Sec. 2 to calculate the ground-state energy,
using molecular orbital method. We consider a trial wavefunction based on single
hydrogen ground-state wavefunctions φ = φ1s centered at R/2 denoted as φ1 and at
−R/2 denoted as φ2. Our trial wavefunction is a linear combination of these two
hydrogen (1s) orbitals,

ψ(r,R) = c1φ1 + c2φ2 ,

where

φ1 =
1

√

πa3
0

e−|r−R/2|/a0 , φ2 =
1

√

πa3
0

e−|r+R/2|/a0 .

The overlap integral S is

S = S12 = S21 = 〈φ1|φ2〉 .
Note that S11 = S22 = 1 due to normalization of 1s orbitals. The Hamiltonian matrix

α = H11 = H22 = 〈φ1|Ĥ|φ1〉 , β = H12 = H21 = 〈φ1|Ĥ|φ2〉 .

The secular equation from Sec. 2 is

∣

∣

∣

∣

∣

α− E β − ES
β − ES α−E

∣

∣

∣

∣

∣

= (α− E)2 − (β −ES)2 = 0 , or α− E = ±(β −ES) .
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This equation has solutions

E± =
α± β

1 ± S
.

The corresponding values for the coefficients (see Exercise 4),

c1 = c2 = c+ =
1

√

2(1 + S)
for E+

and

c1 = −c2 = c− =
1

√

2(1 − S)
for E− .

The actual values for S, α and β can be calculated exactly by using the so-called
ellipsoidal coordinates (see Handout 4). Here we just quote the results. The overlap
integral is given by

S =

[

1 +
R

a0
+

1

3

(

R

a0

)2
]

e−R/a0 .

The diagonal Hamiltonian matrix element is

α = E1s − J +
e2

4πǫR
, J ≡ e2

4πǫ
〈φ1|

1

r2
|φ1〉 =

e2

4πǫR

[

1 −
(

1 +
R

a0

)

e−2R/a0

]

,

where the first term is the hydrogen ground-state energy, second term J > 0 corre-
sponds to the electrostatic energy between electron with charge distribution φ2

1 and
the nucleus 2. The off-diagonal element is

β =

(

E1s +
e2

4πǫR

)

S −K , K ≡ e2

4πǫ
〈φ1|

1

r1
|φ2〉 =

e2

4πǫa0

(

1 +
R

a0

)

e−R/a0 ; ,

where K > 0 has no direct classical analogue. It represents the interaction between
the overlap charge −eφ1φ2 and the nucleus 1. Notice that all three special integrals
S, J,K → 0 as R → ∞.

In summary, the two energies of hydrogen ion using MO are

E+ = E1s +
e2

4πǫR
− J +K

1 + S
,

E− = E1s +
e2

4πǫR
− J −K

1 − S
,

and the corresponding two states are

ψ+ = c+(φ1 + φ2) , ψ1 = c−(φ1 − φ2) .
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As both J and K are positive, E+ is lower than E−. Their behaviors as functions
of separation R are shown in Fig. 2. There is a clear minimum R0 for E+. We
refer state ψ+ as bonding orbital with lower energy and ψ− as antibonding state with
higher energy. Numerically, the bonding energy has a minimum at R0 = 130 pm and
the dissociation energy (E1s −E+) is about 170 kJ/mol. The experimental values are
106 pm and 251 kJ/mol. More accurate calculations reveal major bonding energy
comes from further shrinkage of the orbitals on to the nuclei which is beyond the
simple approximation employed here.

Fig. 2. Energy of bonding state ψ+ (denoted as σg) and of antibonding
state ψ− (denoted σu) as function of separation R.

Fig. 3. Charge distribution |ψ|2 of H+
2. (a) Bonding state. (b) Antibonding state.
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Special integrals using ellipsoidal coordinates

For hydrogen molecule ion, we introduce ellipsoidal coordinates

µ =
r1 + r2
R

, ν =
r1 − r2
R

with volume element in integral

d3r =
1

8
R3(µ2 − ν2)dµdνdφ , 1 ≤ µ <∞ , −1 ≤ ν ≤ 1 , 0 ≤ φ ≤ 2π .

Using the transformation

r1 =
1

2
(µ+ ν) , r2 =

1

2
(µ− ν) ,

the integrals become elementary. For example, the overlap integral

S = 〈ψ1|ψ2〉 =
1

πa3
0

∫

d3re−(r1+r2)/a0 =
1

πa3
0

∫ 2π

0
dφ
∫ ∞

0
dµ
∫ 1

−1
dν

1

8
R8(µ2 − ν2)e−µR/a0

=

[

1 +
R

a0
+

1

3

(

R

a0

)2
]

e−R/a0 .

Please note S → 0 as R→ ∞.
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4.4 Structures of homonuclear diatomic molecules

We now extend our discussion to other molecules. We will use the molecular ver-
sion of the building-up principle. We first determine molecular orbitals (by linear
combination of atomic orbitals as shown for H+

2 ) and the order of their energies and
then feed in the appropriate number of electrons into the lowest available orbitals
consistent with Pauli exclusion principle.

As discussed in previous section for H+
2 , in Fig. 4, we sketch the molecular energy

diagram, indicating two hydrogen atomic energies at each side, and the lower bond-
ing energy and higher antibonding energy levels in the middle. The notation σ or
σ∗ denote σ bonding or antibonding (nonzero overlap integral centered at bonding
region). The single electron of H+

2 simply occupies the lowest σ bonding orbital as
(1sσg)

1, where g denotes the even parity of the orbital.

Fig. 4. Molecular orbital energy level diagram for H2.

For molecule H2, there are two electrons. They can both occupy the bonding
state σ with opposite spins. The corresponding electron configuration is (1sσg)

2.
The molecular electron term symbol is then 1Σg because both spin and orbital an-
gular momentum (the component in the nuclear axis) are zero. The full form of H2

wavefunction is

Ψ(1, 2) = ψ+(r1)ψ+(r2)χ12 , χ12 =
1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2) ,

where ψ+(r) is the σ bond state

ψ+(r) = c+[φa(r) + φb(r)]
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as discussed in the previous section, with φa and φb as the two hydrogen ground-
state (1s) orbitals centered at the two protons respectively. The hydrogen molecule
Hamiltonian Ĥ will contain additional terms for the second electron, similar to the
first electron of hydrogen molecule ion,

Ĥ = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
e2

4πǫ0r1a

− e2

4πǫ0r1b

− e2

4πǫ0r2a

− e2

4πǫ0r2b

+
e2

4πǫ0r12
+

e2

4πǫ0rab

,

where the term containing r12 represents the Coulomb repulsion potential between
the two electron and rab = R is the separation between the two protons. The energy
expectation E = 〈Ψ|Ĥ|Ψ〉 can be done analytically, though it is much more tedious
than that of H+

2 . The numerical results give energy minimum at R = rab = 74 pm
and dissociation energy (the energy difference between H2 and two well separated
H atoms) is 350 kJ/mol, comparing with experimental results of 74.2 pm and 432
kJ/mol. Although these results are reasonable, there is room for improvement.

We next consider a possible molecule He2 formed by two He atoms. There are 4
electrons. The electron configuration is (1sσ)2(1sσ∗)2, i.e., two electrons are in the
bonding orbital σg and the other two are in the antibonding orbital σ∗

u. Qualitatively,
we can argue that the negative bonding energy between the first two electrons will
mostly be canceled by the positive antibonding energy of the other two electrons.
We conclude that He2 is unstable. We can extend this qualitative argument to othe
molecules. We define bonding order as the difference between number of bonds and
that of antibonds (two electrons forming a single bond). The bonding order of He2 is
zero and He2 is unstable.

In order to discuss other higher order homonuclear diatomic molecules, we need
to construct more molecule orbitals. From discussion of σ bonding of H+

2 , we rec-
ognize that the overlap between atomic orbitals centered at different nuclear posi-
tions is crucial in establishing bonding. We need to discuss overlap between higher
order atomic orbitals. The symmetries of atomic wavefunction are therefore impor-
tant. For atomic orbitals, we review their wavefunction symmetries by sketching their
structures in Fig. 5. Using symmetry argument, we conclude that s- and pz-orbitals
have nonzero overlap and may participate in bonding and give rise to cylindrically
symmetric orbitals. We refer these orbitals as σ-orbitals. On the other hand, the
perpendicular px-and py-orbitals may overlap in broadside sense and give rise to the
so-called π-orbitals. Notice that overall overlap integrals between px,y-orbitals and
pz-, s-orbitals are zero due to their atomic orbital symmetry.
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Fig. 5. Structures of atomic orbitals.

We can now set up molecular-orbital (MO) energy level diagram as shown in
Fig. 6. The two lowest levels are from (1s) bonding (σ) and antibonding (σ∗). The
next two from (2s) orbitals of similar levels. For the p-orbitals, pz-orbitals contribute
two σ orbitals and px,y contribute four π orbitals. These energy structure is shown
in Fig. 6(a). The more detailed calculations show that due to the overlap between 2s
orbital with pz orbitals, forming hybrid orbitals. The 2sσ∗ level is pushed lowered
slightly and 2pσ level is pushed up nd becomes higher than the energy of 2pπ orbital.
Therefore we have new, more accurate energy level diagram as shown in Fig. 6(b).
The corresponding electron configuration is then given by

(1sσg)(1sσ
∗
u)(2sσg)(2sσ

∗
u)(2pπu)(2pσg)(2pπ

∗
g)(2pσ

∗
u) · · · ,

where each of π-orbital (with x, y components) can take up to 4 electrons, and each
of σ can take up to 2 electrons.
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Fig. 6. (a) Simple and (b) more accurate MO energy level diagram.

Using this MO energy diagram, we can now consider other higher-order diatomic
molecules. Nitrogen molecule N2 has 14 electrons. Its electron configuration is

(1sσg)
2(1sσ∗

u)
2(2sσg)

2(2sσ∗
u)

2(2pπu)
4(2pσg)

2 ,

and the molecular term is 1Σg. The bonding order is 3. So N2 molecule has a triple
bond consisting two π-bonds and one σ-bond.

For O2, the 16 electron will be in the configuration

(1sσg)
2(1sσ∗

u)
2(2sσg)

2(2sσ∗
u)

2(2pπu)
4(2pσg)

2(2pπ∗
g)

2 ,

where the last two electrons in the π∗-orbitals can be accommodated in different ways.
If they both enter the same orbital (hence total angular momentum about the axis
is ±2h̄), we have term symbol 1∆ as total spin must be zero. If one electron enter
π∗ orbital with l = 1 and the other with l = −1, we have term symbol 1Σ or 3Σ,
depending on their total spin. Here we can useending on their total spin. Here we
can use similar Hund’s rule of atomic physics and argue that energy level with the
largest total spin has lower energy due to reducing the Coulomb repulsion. Therefore
3Σg is the ground state of O2 and O2 is a doubly-bounded species (the bond order to
2).

The molecule F2 has configuration · · · (2pπu)
4(2pσg)

2(2pπ∗
g)

4. The ground state is
1Σg with a single bond.
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The case of C2 is instructive. Using the building-up principle as before, we have
configuration

(1sσg)
2(1sσ∗

u)
2(2sσg)

2(2sσ∗
u)

2(2pπu)
4 ,

hence 1Σg. But in fact the ground state of C2 molecule is found to be 3Πu. The reason
is the last two electrons enter the orbitals in different way as · · · (2pπu)

3(2pσg), i.e., one
in 2pπu-orbital and the other in 2pσg-orbital. Although 2pσg has higher energy than
2pπu is, this is more than compensated by the reducing electron-electron repulsion
due to the fact that electrons are in different space. This example shows the limitation
of our molecular orbitals approach. The electron configuration of C2 is therefore

(1sσg)
2(1sσ∗

u)
2(2sσg)

2(2sσ∗
u)

2(2pπu)
3(2pσg)

1 .

The bond order is two. In general, more accurate calculations by a quantum many-
body theory will provide better descriptions of molecular ground and excited states.

Most discussion of molecule QM in this chapter can be found in Molecular Quan-

tum Mechanics, P.W. Atkins, Oxford University Press, 1983.


