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1. The scattering amplitude for this system is

f(θ) =
1

k

[√
4π eiδ0 sin δ0 Y00(θ) +

√
12π eiδ1 sin δ1 Y10(θ)

]
.

The relevant spherical harmonics are

Y00(θ) =
1√
4π
, Y10(θ) =

√
3

4π
cos θ.

Hence the differential cross section is

dσ

dΩ
= |f(θ)|2 =

1

k2

[
sin2 δ0 + 9 sin2 δ1 cos2 θ + 6 cos(δ0 − δ1) sin δ0 sin δ1 cos θ

]
.

For NN scattering at a centre-of-mass energy E = 25 MeV, the wavenumber is

k =
√
ME/~ = 0.77 fm and so 1/k2 = 17 mb. For the phases in the question, the

dependence of the differential cross section (in mb/sr) on θ (in degreees) has the

form
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2. (a) Antisymmetry requires the two protons to have odd orbital angular momentum

and hence L ≥ 1. Since phase shifts vanish at low energies as δL ∝ k2L+1, the

total cross section will have the form

σ ' 4π

k2
sin2 δ1 ∝ k4,

which vanishes as k → 0. (Waves with L > 1 will give contributions that

vanish even faster.)
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(b) More generally, the scattering amplitude for the protons is

f(θ) =
1

k

∑
odd L

√
4π(2L+ 1) eiδL sin δL YL0(θ).

Since θ → π − θ is just parity reversal for functions that are independent of

φ, all the YL0(θ) for odd L are odd under this reflection. (Alternatively, you

could use the fact that they are all odd polynomials in cos θ.) The differential

cross section,
dσ

dΩ
= |f(θ)|2,

is therefore even under θ → π − θ. This symmetry is to be expected: the two

protons are indistinguishable.

3. (a) The divergence of j is

∇ · j =
~

2iM

[
Ψ∗∇2Ψ− (∇2Ψ∗)Ψ

]
.

We can substitute for ∇2Ψ and ∇2Ψ∗ using the Schrödinger equation and its

conjugate,

−i~
∂Ψ∗

∂t
= − ~2

2M
∇2Ψ∗ + Ψ∗V ∗.

This gives

∇ · j = −Ψ∗
(
∂Ψ

∂t
+

i

~
VΨ

)
−
(
∂Ψ∗

∂t
− i

~
Ψ∗V ∗

)
Ψ,

which reduces to the continuity equation

∇ · j = − ∂

∂t
Ψ∗Ψ = − ∂ρ

∂t
,

provided V is real.

This shows that probability is conserved: the only way that the probability of

finding a particle inside some region can change is if there is a flux through the

surface surrounding the region.

(b) The current density for this wave is

jz = |A|2~k
M
,

which is just the product of the probability density |A|2 and the clasical speed

of the particle (p/M).

(c) The gradient operator in spherical polar coordinates is

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
.

Only the term in ∇ψ where ∂/∂r acts on the exponential gives a result that

falls off like 1/r; everything else goes like 1/r2 and so can be neglected for large

enough r. This leaves

∇ψ → i k eikr

r
f(θ, φ) er.
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With this, we get the current density

j→ ~k
M r2

|f(θ, φ)|2er.

This is purely radial and so the total probability flowing through a sphere of

radius r is

I = r2
∫
|j| dΩ =

~k
M

∫
|f(θ, φ)|2 dΩ,

which is independent of r.

4. From the coefficients of the incoming wave e−ikr in the two expressions, we get

(−1)l
√

4π(2l + 1) = il bl e
−iδl ,

and so

bl = il
√

4π(2l + 1) eiδl .

Similarly, from the outgoing waves, we get√
4π(2l + 1)(1 + fl) = (−i)l bl e

iδl ,

and so

1 + fl =
(−i)l bl e

iδl√
4π(2l + 1)

= e2iδl .

Hence the amplitudes of the scattered waves are

fl = e2iδl − 1 = 2i eiδl sin δl.

This shows that probability is conserved in each partial wave.

5. (a) The matching conditions are

u(R) = A sinKR = B sin(kR + δ),

u′(R) = KA cosKR = kB cos(kR + δ).

Taking the ratio of these gives

1

K
tan(KR) =

1

k
tan(kR + δ).

With the help of the given identity, this becomes

1

K
tan(KR) =

1

k

tan(kR) + tan δ

1− tan(kR) tan δ
,

which can be rewritten as a linear equation tan δ. Solving this gives

tan δ =
k tan(KR)−K tan(kR)

K + k tan(KR) tan(kR)
.
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(b) For two particles of equal mass, the centre-of-mass energy is E = Elab/2. From

this we can determine k and K for each energy and hence obtain δ.

Elab (MeV) δmodel δexpt
0.10 170◦ 169◦

1.0 150◦ 148◦

10 110◦ 103◦

100 59◦ 43◦

Here the “experimental” values are from the Nijmegen PWA93 3S1 wave. (This

is the channel which has a bound state, the deuteron.)

(c) In the same way, we get the phases for the weaker potential.

Elab (MeV) δmodel δexpt
0.10 37◦ 38◦

1.0 64◦ 62◦

10 69◦ 60◦

100 46◦ 27◦

This time the “experimental” values are from the Nijmegen PWA93 1S0 wave.

(d) The agreement is remarkably good, given the simple model we have used.

In each case, I have adjusted only one parameter, V0, to fit one observable,

either the deuteron binding energy or the singlet scattering length. In these

channels, NN scattering at low energies is dominated by the existence (or near

existence) of a bound state, and is relatively insensitive to the detailed shape

of the potential, especially at energies below about 10 MeV).

(e) As k → 0, we can use tanx ' x to get

a = − lim
k→0

tan δ

k
= − 1

K0

[
tan(K0R)−K0R

]
,

where K0 =
√
MV0/~. For the stronger potential of part (b), this gives

a = 5.1 fm. For the weaker one, it gives a = −21.1 fm. For compari-

son, the observed triplet and singlet scattering lengths are at = 5.4 fm and

as = −23.7 fm. In the zero-range limit, the triplet length would be exactly

equal to the deuteron decay length, 1/γ = 4.4 fm. The difference is a result

of the finite effective range. Our stronger potential has too short a range, and

so its scattering length lies between these values. The weaker potential gives

a scattering length that agrees with singlet length (within the accuracy of the

value for V0 given in the question).
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6. The phase shifts from the Nijmegen PWA93 are shown in the figure (plotted in

degrees against lab-frame energy in MeV).
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Here the phase for 3D2 np scattering is given by the solid line, 1D2 np by the long-

dashed line, and 1D2 pp by the short-dashed line. One immediate observation is

that the scattering is attractive in all these channels (the phase shifts are positive).

We can also see that the forces depend on spin and/or isospin (the phase for the

channel with S = 1 and T = 0 is very different from those for the channels with

S = 0 and T = 1). Isospin is clearly a good but not perfect symmetry (the phases

for the two 1D2 channels are very similar but not identical).

In waves like these with nonzero L, we would expect the scattering to be more

sensitive to long-ranged pion-exchange forces. The largest isospin-breaking effect in

these is the difference between the masses of the neutral and charged pions. The

leads to interactions that break isospin symmetry but still respect charge symmetry,

and so we would expect the 1D2 nn phase shift (could it ever be measured) to be

most similar to the pp one.
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7. The elastic cross section is for S-wave scattering is

σ =
4π

k2
sin2 δ.

The imaginary part of the forward scattering amplitude is thus

Im[f(0)] =
1

k
sin2 δ =

k

4π
σ.

8. (a) The equation in the question can be rewritten as

iΓel

2

η0 + 1

η0 − 1
' −

[
E − E0 + i

Γre

2

]
.

Multiply this by η0 − 1 and solve the resulting linear equation for η0.

(b) The elastic cross section is

σel =
π

k2
|1− η0|2,

and the reaction cross section is

σre =
π

k2
(
1− |η0|2

)
.

Substitute the answer from part (a) into these expressions.

(c) At the resonance peak the terms involving E − E0 vanish, leaving

σel '
4π

k2
Γ2
el

Γ2
,

σre '
4π

k2
ΓelΓre

Γ2
.

The total cross section is

σtot = σel + σre =
4π

k2
Γel

Γ
,

and hence its square is

σ2
tot =

4π

k2
σel.

9. (a) The peak cross sections for neutron-induced fission and radiative capture are

σf =
4π

k2
g

ΓnΓf
Γ2

, σγ =
4π

k2
g

ΓnΓγ
Γ2

,

where Γn, Γf and Γγ are the partial widths for decay of the resonance by

neutron emission, fission and photon emission. The total width of the resonance

is, neglecting the very small contribution from neutron emission, Γ ' Γf + Γγ.

For this resonance at E = 0.29 × 10−6 MeV, we have k =
√
ME/~c

= 1.2× 10−4 fm−1 and g = 7/16. From the reaction cross sections we get

ΓnΓf =
k2σf
4πg

Γ2 = 9.5× 10−7 eV2,

ΓnΓγ =
k2σγ
4πg

Γ2 = 3.3× 10−7 eV2.
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Adding these gives

Γn = 9.5× 10−6 eV,

and hence

Γf = 0.100 eV, Γγ = 0.035 eV.

(b) The elastic cross section is

σn =
4π

k2
g

Γ2
n

Γ2
= 1.9 fm2 = 19 mb.

10. (a) The initial energy in the centre-of-mass frame of this system is

E =
40

42
Elab = 11.4 MeV.

From the given masses and excitation energy, the energy released is

Q =
[
M(2H) +M(40Ca)−M(1H)−M(41Ca)

]
c2 − Ex

= 6.59× 10−3 u c2 − 2.47 MeV = 3.67 MeV

(using 1 u = 931.5 MeV/c2), and hence the final energy is

E ′ = E +Q = 15.1 MeV.

Combining these energies with the reduced masses, µ = 1770 MeV/c2 and

µ′ = 910 MeV/c2, we get the initial and final wave numbers, k = 1.00 fm−1

and k′ = 0.83 fm−1. The momentum transfer for a reaction where the outgoing

particles are at an angle θ to the beam is

q =
√
k2 + k′2 − 2kk′ cos θ.

At the angles of the three peaks, this gives q = 0.27, 0.72 and 1.15 fm−1.

(b) In the PWBA, we expect the differential cross section to have the form

dσ

dΩ
∝ |jl(qr)|2.

If we assume that l = 1 then the ratios of the values of q from part (a) are

consistent with the ratios of the values of x = qR at which j1(x) has peaks.

Alternatively if we use these to deduce a radius at which the reaction takes

place, we get R = 7.8, 8.2 and 8.0 fm, which are compatible with a single

radius of about 8 fm. For comparison, the 40Ca core has a radius of about

4.1 fm. Our deduced radius is reasonable for a reaction that involves the tails

of nuclear wave functions.

In contrast, if we assume l = 3, then the peaks do not follow the pattern of

j3(qR). For example, if we try to deduce a reaction radius we get different

values from each: R = 16.9, 11.9 and 10.4 fm. Moreover the first of these is

implausibly large, lying more than 10 fm outside the 40Ca core.
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