You may assume the following formulae without proof:

The partial-wave expansion of a plane wave is

$$e^{ikz} = \sum_{l} \sqrt{4\pi(2l+1)} i^{l} j_{l}(kr) Y_{l0}(\theta),$$

where the regular spherical Bessel functions have the asymptotic forms for large x

$$j_l(x) \to \frac{\sin(x - l\pi/2)}{x}.$$

The differential cross section for elastic scattering in the centre-of-mass frame is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(\theta,\phi)|^2$$

where, for a central interaction,

$$f(\theta, \phi) = \frac{1}{k} \sum_{l} \sqrt{4\pi(2l+1)} e^{i\delta_l} \sin \delta_l Y_{l0}(\theta).$$

Here the Y_{l0} are normalised spherical harmonics,

$$Y_{l0}(\theta) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta),$$

with

$$P_0(\cos\theta) = 1$$
, $P_1(\cos\theta) = \cos\theta$, $P_2(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$.

In terms of the amplitudes η_l for the outgoing waves, the elastic-scattering and reaction cross sections are π

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum_{l} (2l+1)|1-\eta_l|^2, \qquad \sigma_{\rm re} = \frac{\pi}{k^2} \sum_{l} (2l+1) \left(1-|\eta_l|^2\right).$$

The spherical Bessel functions $j_l(x)$ have maxima at the values of x given in the table below.

l = 0	l = 1	l=2	l = 3	l = 4
0.00	2.08	3.34	4.51	5.65
4.49	5.94	7.29	8.58	9.84
7.73	9.20	10.61	11.97	13.30

The energy of the Gamow peak is

$$E_0 = 1.22 (Z_a^2 Z_b^2 \mu T_6^2)^{1/3}$$
 keV, where $T = T_6 \times 10^6$ K and μ has units of u.

The reaction cross section in the sharp-cut-off model is

_

$$\sigma_{\rm sco} = \pi R^2 \left(1 - \frac{E_b}{E} \right).$$

The atomic mass unit is $1 \text{ u} = 931.5 \text{ MeV}/c^2$.