
PC4602 RELATIVISTIC QUANTUM PHYSICS EXAMPLES 6

1. Two particles with masses m1 and m2 collide with four-momenta

p1 = (E1,p1) and p2 = (E2,p2),

and produce two particles with masses m3 and m4 and four-momenta

p3 = (E3,p3) and p4 = (E4,p4).

The differential cross section for this process has the general form

dσ =
1

F
|Mfi|2 dQ,

where the invariant amplitude is Mfi, the flux factor is

F = 4 [(p1 · p2)
2 −m2

1m
2
2]

1/2,

and the Lorentz-invariant element of final phase space is

dQ = (2π)4 δ4(p3 + p4 − p1 − p2)
d3p3

(2π)32E3

d3p4

(2π)32E4

.

(a) Consider the collision in the centre-of-momentum frame, where

p1 = −p2 = p, p3 = −p4 = p′,

p · p′ = |p||p′| cos θcm,

and

E1 + E2 = E3 + E4 = W.

Show that the flux factor can be written in this frame as

F = 4W |p|.

By integrating over the redundant variables, p4 and |p3|, show that the element

of invariant phase space can be written

dQ =
1

(2π)2

|p′|
4(E3 + E4)

dΩcm,

where dΩcm = sin θcm dθcm dφ. Hence show that the angular differential cross

section can be written

dσ

dΩ cm
=

1

64π2W 2

|p′|
|p|
|Mfi|2.
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(b) Find expressions for the Lorentz invariants

s = (p1 + p2)
2 = (p3 + p4)

2 and t = (p1 − p3)
2 = (p2 − p4)

2,

in terms of the scattering variables in the centre-of-momentum frame. Use the

expression for t to show that

dt = 2|p||p′| d(cos θcm),

and hence show that
dσ

d|t|
=

1

64πW 2|p|2
|Mfi|2,

for a process where |Mfi|2 is independent of φ. Why is this differential cross

section a Lorentz invariant?

(c) In the ultra-relativistic limit, |p| � m1, m2, show that

dσ

d|t|
=

1

16πs2
|Mfi|2.

2. Consider the scattering of two spin-1
2

particles with charges q1 and q2 and masses

m1 and m2. In the centre-of-momentum frame the particles have initial momenta

p1 = −p2 = p,

and final momenta

p′
1 = −p′

2 = p′,

where the scattering angle between p and p′ is θ. The differential cross section for

unpolarised particles may be written as

dσ

dΩ
=

1

(8πW )2

1

4

∑
s1s2s′

1s′
2

|Mfi|2,

where W is the total energy and dΩ is the element of solid angle in the centre-of-

momentum frame.

(a) Show that the square of the transferred four-momentum is

(p′1 − p1)
2 = −4p2 sin2 θ

2
.

(b) Draw the Feynman diagram for the lowest-order contribution to this process

and show that the corresponding invariant amplitude is

Mfi = i ū(p′
1, s

′
1)(−i q1γ

µ)u(p1, s1)
−i gµν

(p′1 − p1)2 + iε
ū(p′

2, s
′
2)(−i q2γ

ν)u(p2, s2).
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(c) Use the nonrelativistic approximation

ū(p′, s′)γµu(p, s) ' 2m δs′s δµ0 ,

to show that the differential cross section for nonrelativistic scattering is given

by
dσ

dΩ
' q2

1q
2
2

64π2

(
m1m2

m1 + m2

)2
1

|p|4 sin4 θ
2

.

(d) Now assume that particles 1 and 2 are identical fermions with mass m and

charge q. Show that the non-relativistic differential cross section in this case

is given by

dσ

dΩ
=

q4

64π2

(m

2

)2 1

|p|4

[
1

sin4 θ
2

+
1

cos4 θ
2

− 1

sin2 θ
2
cos2 θ

2

]
.

3. Consider the scattering of two spin-0 particles with charges q1 and q2 and masses m1

and m2. The kinematic variables and the cross section in the centre-of-momentum

frame are defined in the same way as in the previous question.

(a) Draw the Feynman diagram for the lowest-order contribution to this process

and show that the corresponding invariant amplitude is

Mfi = i (−i q1)(p
µ
1 + p′µ1 )

−i gµν

(p′1 − p1)2 + iε
(−i q2)(p

ν
2 + p′ν2 ).

(b) Show that the differential cross section for this process is

dσ

dΩ
=

q2
1q

2
2

64π2(E1 + E2)2

(
E1E2 + |p|2 cos2 θ

2

)2

|p|4 sin4 θ
2

.

(c) Show that in the nonrelativistic limit, |p| � m1, m2, this cross section reduces

to the usual Rutherford cross section.

(d) Find the form of the cross section in the limit where particle 2 is very heavy,

m2 � |p|, m1. Compare your result with the Mott cross section for scattering

of a fermion from a heavy target, and explain why there is no suppression at

backward angles in the spin-0 case.
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4. [Postgraduate students only.]

(a) Use the Feynman rules for QED to write down the leading-order S-matrix

element for the process e+e− → γγ.

(b) Show that the spin-averaged square of the amplitude for this process is

1

4

∑
|M |2 = 2

[
p1 · k2

p1 · k1

+
p1 · k1

p1 · k2

+ 1−
(

1− m2(k1 · k2)

(p1 · k1)(p1 · k2)

)2
]

,

where p1, p2 are the electrons’ momenta and k1, k2 are those of the photons.

Hence obtain the unpolarised differential cross section for in the centre-of-mass

frame. Integrate over angles to show that the total cross section is, in the ultra-

relativistic limit where the electron velocity v is clise to 1,

σ ' πα2

m2

1− v2

4

[
2 ln

(
2

1− v

)
− 2

]
.

(c) Calculate the value for this total cross section at the energy of the Z0 and

compare it with the total cross section for e+e− → Z0 → hadrons. (The latter

can be found in: Review of Particle Properties, Physics Letters B667 (2008).)

[Hints : You will need to evaluate sums over the spins of the electrons, which

is best done by converting them into traces of Dirac matrices. The method

is described in Aitchison and Hey 8.2.3, 8.2.4 and Gross 10.2, 10.3. Similar

discussions can also be found in: Halzen and Martin 6.3, 6.4, Mandl and Shaw

8.2, and Itzykson and Zuber 5.2.1, with many useful identities collected in the

appendices (Mandl and Shaw A.2, A.3, A.5 and Itzykson and Zuber A.2).

The evaluation of the polarisation sum is easiest if you use the 4-momentum of

the electron, p1, to define the polarisation vectors for the unphysical photons,

so that

ε(0)(k) =
p1

m
, ε(3)(k) =

mk − (p1 · k)p1/m

p1 · k
,

and the transverse polarisation vectors are orthogonal to both k and p1. The

evaluation of the traces then follows the calculation for Compton scattering,

which is described in detail in Mandl and Shaw 8.6 and Itzykson and Zuber

5.2.1 (with appropriate substitutions of variables). Aitchison and Hey 8.6.3,

Gross 10.5, and Halzen and Martin 6.14, 6.15 also discuss this process. For the

polarisation basis suggested above, the term with the non-trivial polarisation

sum can be expressed in the form

2∑
s,s′=1

(
ε(s)(k1) · ε(s′)(k2)

)2
= 1 +

[
1− m2(k1 · k2)

(p1 · k1)(p1 · k2)

]2

.

Mike Birse (March 2010)
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