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1. A Hermitian Klein-Gordon field in one dimension is described by the quantum field

operator

φ(t, z) =
∑

n

1√
2EnL

(
an e−i(Ent−knz) + a†n e+i(Ent−knz)

)
.

The field is defined in a box of length L with periodic boundary conditions and so

kn =
2πn

L
.

The operators an and a†n can be assumed to satisfy the commutation relations[
an, a

†
m

]
= δnm,

[
an, am

]
=

[
a†n, a

†
m

]
= 0.

The Hamiltonian for the field is

H =

∫ L

0

dz
1

2

[(
∂φ

∂t

)2

+

(
∂φ

∂z

)2

+m2φ2

]
,

where
∂φ

∂t
= −i

∑
n

√
En

2L

(
an e−i(Ent−knz) − a†n e+i(Ent−knz)

)
.

(a) Show that the Hamitonian can be written in terms of the operators an and a†n

as

H =
∑

n

En

(
a†nan + 1

2

)
,

provided that En is taken to be

En =
√
m2 + k2

n.

(b) Evaluate the commutators [
H, an

]
and

[
H, a†n

]
.

Hence show that an decreases the energy by En and a†n increases the energy by

En.

(c) Evaluate the commutator [
H,φ(t, z)

]
,

and hence show that φ(t, z) satisfies the Heisenberg equation of motion.

[
H,φ(t, z)

]
= −i

∂φ

∂t
.
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(d) The momentum operator is defined by

P = −
∫ L

0

dz
∂φ

∂t

∂φ

∂z
.

Show that P can be written terms of the operators an and a†n as

P =
∑

n

kna
†
nan.

(e) Evaluate the commutators [
P, an

]
and

[
P, a†n

]
.

Discuss why the quanta destroyed and created by an and a†n can be interpreted

as relativistic particles with mass m.

(f) Evaluate the commutator [
P, φ(t, z)

]
,

and hence show that P can be regarded as the generator of translations in

space.

(g) Evaluate the equal-time commutators[
∂φ

∂t
(t, z), φ(t, z′)

]
and

[
φ(t, z), φ(t, z′)

]
.

2. A complex Klein-Gordon field is described by the quantum field operator

φ(x) =
∑
p

1√
2E(p)V

(
a(p) e−ip·x + c†(p) e+ip·x),

where

p · x = E(p) t− p · x and E(p) =
√
m2 + p2.

Assume that all the commutators involving the creation and destruction operators

vanish except for[
a(p), a†(p′)

]
= δpp′ and

[
c(p), c†(p′)

]
= δpp′ .

The Hamiltonian for the field is (ignoring any infinite constant term)

H =
∑
p

E(p)
(
a†(p) a(p) + c†(p) c(p)

)
.

(a) Evaluate the commutators[
H, a(p)

]
and

[
H, c(p)

]
.

Hence show that the operators a(p) and c(p) decrease the energy by E(p) and

that the operators a†(p) and c†(p) increase the energy by E(p).
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(b) Show that φ(x) satisfies the Heisenberg equation of motion

−i
∂φ

∂t
=

[
H,φ

]
.

(c) The charge operator Q is given by

Q =

∫
d3x ρ(x),

where ρ(x) is the Klein-Gordon density

ρ(x) = i

[
φ†(x)

∂φ(x)

∂t
− ∂φ†(x)

∂t
φ(x)

]
.

Evaluate the commutators[
Q, a(p)

]
and

[
Q, c(p)

]
.

Hence show that the operators a(p) and c†(p) decrease the charge by one unit

and that the operators a†(p) and c(p) increase the charge by one unit.

3. A Dirac field is described by the quantum field operator

ψ(x) =
∑
p,s

1√
2E(p)V

(
bs(p)us(p)e−ip·x + d†s(p) vs(p)e+ip·x),

where

p · x = E(p) t− p · x and E(p) =
√
m2 + p2.

The free-particle spinors, us(p) and vs(p), are covariantly normalised and orthogo-

nal:

u†
s(p)us′(p) = 2E(p)δss′ , v†s(p)vs′(p) = 2E(p)δss′ ,

and

u†
s(p)v−s′(−p) = 0.

Assume that all the anticommutators involving the creation and destruction oper-

ators vanish except for{
bs(p), b†s′(p

′)
}

= δss′δpp′ and
{
ds(p), d†s′(p

′)
}

= δss′δpp′ .

(a) The Hamiltonian for the field is

H =

∫
d3xψ†(−i α · ∇ + βm

)
ψ.

Show that this can be rewritten (up to an infinite constant) as

H =
∑
p,s

E(p)
(
b†s(p) bs(p) + d†s(p) ds(p)

)
.
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(b) Evaluate the commutators[
H, bs(p)

]
and

[
H, ds(p)

]
.

Hence show that the operators bs(p) and ds(p) decrease the energy by E(p)

and that the operators b†s(p) and d†s(p) increase the energy by E(p).

(c) Show that ψ(x) satisfies the Heisenberg equation of motion

−i
∂ψ

∂t
=

[
H,ψ

]
.

(d) The charge operator Q is given by

Q =

∫
d3x ρ(x),

where ρ(x) is the Dirac density

ρ(x) = ψ†(x)ψ(x).

Evaluate the commutators[
Q, bs(p)

]
and

[
Q, ds(p)

]
.

Hence show that the operators bs(p) and d†s(p) decrease the charge by one unit

and that the operators b†s(p) and ds(p) increase the charge by one unit.

4. The Feynman propagator for a complex Klein-Gordon field is defined by

GF (x) = −i 〈0|T[φ(x)φ†(0)]|0〉,

where the time-ordered product is defined as

T[φ(x)φ†(0)] = θ(t)φ(x)φ†(0) + θ(−t)φ†(0)φ(x).

Here θ(t) is the step function

θ(t) =

{
0 t < 0
1 t > 0

,

whose derivative is the Dirac δ-function

d

dt
θ(t) = δ(t).

(a) By expanding the field operators as in question 2, show that GF (x) can be

written

GF (x) = −i
∑
p

[
θ(t)

e−i(Et−p·x)

2E(p)V
+ θ(−t) ei(Et−p·x)

2E(p)V

]
,

where E(p) =
√
m2 + p2. Give a physical interpretation for each of the two

sets of terms in this expansion.
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(b) Show that GF (x) satisfies the inhomogeneous Klein-Gordon equation(
∂µ∂

µ +m2
)
GF (x) = −δ4(x).

[You can do this either by diferentiating the original expression for GF (x) and

using the equal-time commutation relations,

[
φ(0,x), φ†(0,x′)

]
= 0 and

[
∂φ

∂t
(0,x), φ†(0,x′)

]
= −i δ3(x− x′),

or by differentiating the expansion in part (a).]

(c) The result of part (b) shows that GF (x) is a Green’s function for the Klein-

Gordon equation. By taking the Fourier transform of this equation, show that

the momentum-space Green’s function,

G̃F (k) =

∫
d4xGF (x) eik·x,

satisfies

(k2 −m2) G̃F (k) = 1.

Hence show that GF (x) can be written

GF (x) =
1

2πV

∫
dk0

∑
k

e−ik·x

k2 −m2
.

[This expression ignores the fact that we need to impose the correct boundary

conditions on the Green’s function by specifying how the singularities at k2 =

m2 should be avoided.]

(d) [For students who have taken a course on complex variables.] The Feynman

prescription for avoiding the singularities of G̃F (k) is to add +iε to the denom-

inator:

G̃F (k) =
1

k2 −m2 + iε
.

Choose suitable contours in the complex k0 plane for the cases t > 0 and t < 0.

By integrating the result of part (c) over k0 using these contours, show that

the Feynman prescription does lead to the same expression for GF (x) as you

found in part (a).

Mike Birse (February 2010)

5


