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1. The four-component spinor wave function ψ(t,x) of a free spin-1
2

particle of mass

m is described by the Dirac equation

i
∂ψ

∂t
= Hψ,

where the Dirac Hamiltonian is

H = −i α · ∇+ βm.

In the Pauli-Dirac representation, the 4× 4 matrices are

α =

(
0 σ
σ 0

)
and β =

(
1 0
0 −1

)
,

where σ = (σ1, σ2, σ3) are the Pauli matrices.

(a) Show that these matrices satisfy the anticommutation relations

{αi, αj} = 2δij, {αi, β} = 0,

and hence that ψ satisfies the Klein-Gordon equation.

(b) Show that

ρ(x) = ψ†ψ and j(x) = ψ†αψ

satisfy the equation of continuity

∂ρ

∂t
= −∇ · j.

(c) Show that the orbital angular momentum operator L = x×p (where p = −i∇)

is not a constant of motion; show in particular that

[H,L] = −i α×P.

(d) Consider the operator

S =
1

2

(
σ 0
0 σ

)
.

What are the eigenvalues of S2 and Si?

(e) Show that

[αi, Sj] = i εijk αk and [β, Sj] = 0.

Hence show that S is not a constant of motion, but that J = L + S is. What

properties do these operators describe?

(f) Show that S ·P is also a constant of motion. What property does it describe?
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2. The wave function of a free spin-1
2

particle satisfies the time-independent Dirac

equation

Eψ = [−i α · ∇+ βm]ψ.

(a) Working in the Pauli-Dirac representation, show that

ψ(+)
p,s (x) = us(p)

e+ip·x√
2E(p)V

,

where

us(p) =
√
E(p) +m

 χ+s

σ · p
E(p) +m

χ+s

 ,

is a solution to this equation and describes a particle with momentum p and

energy E(p) = +
√

p2 +m2. Show that the solution is normalised in a box

of volume V . Show that if p = (0, 0, p), the particle has definite spin S3 = s.

[Here χs, with s = ±1
2
, denotes a normalised eigenvector of σ3.]

(b) Show that

ψ(−)
p,s (x) = vs(p)

e−ip·x√
2E(p)V

,

where

vs(p) =
√
E(p) +m

( σ · p
E(p) +m

χ−s

χ−s

)
,

is also a solution to the Dirac equation and describes a particle with momentum

−p and negative energy −E(p).

(c) Evaluate the density, ρ = ψ†ψ, the current density, j = ψ†αψ, and the scalar

density ρs = ψψ = ψ†βψ, for the positive- and negative-energy wave functions

you found in parts (a) and (b).

3. The Weyl (pronounced “vile”) representation for the Dirac matrices is

α =

(
σ 0
0 −σ

)
, β =

(
0 1
1 0

)
,

in terms of the Pauli matrices σ.

(a) Confirm that these matrices satisfy the anticommutation relations given above

in question 1.

(b) Working in the Weyl representation, write the Dirac wave function as

ψ(x) = Ne−ip·x
(
ζ
η

)
,

and use this to convert the Dirac equation,

i
∂ψ

∂t
= −i α · ∇ψ + βmψ,

into a pair of coupled matrix equations for ζ and η.
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(c) Show that for a massless particle (m = 0) these equations decouple to become

Eζ = +σ · pζ,

and

Eη = −σ · pη.

(d) Find the energy eigenvalues for the equation for ζ and show that they agree

with the expected energy-momentum relation for a massless particle.

(e) The helicity of a spin-1
2

particle is defined by the operator

S · p̂ =
1

2|p|

(
σ · p 0

0 σ · p

)
.

Show that the positive-energy solution of the equation for ζ describes a particle

with definite helicity, +1
2
.

(f) Show that the negative-energy solution of the equation for ζ describes an

antiparticle with definite helicity, −1
2
. [Remember that you need to replace

E(p) → −E(p), p → −p, and s→ −s to get the wave function of an antipar-

ticle.]

4. The manifestly covariant form of the Dirac equation is

[iγµ∂µ −m]ψ(x) = 0.

(a) Show that ψ(x) satisfies the Klein-Gordon equation if

γµγν + γνγµ = 2gµν .

(b) Consider Dirac wave functions with the forms

ψ(+)(x) = us(p)
e−ip·x√
2EpV

and ψ(−)(x) = vs(p)
e+ip·x√
2EpV

.

Show that these are solutions to the Dirac equation if the spinors us(p) and

vs(p) satisfy the matrix equations

[γµpµ −m]us(p) = 0 and [γµpµ +m]vs(p) = 0.

(c) Write down the covariant form of the Dirac equation if the particle has charge q

and interacts with an electromagnetic field described by the 4-vector potential

Aµ(x).
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(d) The Dirac conjugate of ψ is defined by

ψ = ψ†γ0.

Use the property

γµ† = γ0γ
µγ0

to show that ψ satisfies the Dirac equation

−i (∂µψ)γµ −mψ = 0.

(e) Show that the current density

jµ = ψγµψ

satisfies the equation of continuity.

5. The wave function, ψ(r), of a relativistic spin-half particle with energy E in a

potential V (r) satisfies the Dirac equation

[−i α · ∇+ βm+ V (r)]ψ(r) = Eψ(r).

Working in the Pauli-Dirac representation (see question 1), consider a solution with

j = 1
2

and even parity,

ψ(r) =

(
f(r)χ

i σ · r̂ g(r)χ

)
,

where χ denotes a constant Pauli spinor.

(a) Show that the radial functions f(r) and g(r) satisfy the coupled differential

equations
dg

dr
+

2g(r)

r
+ [m+ V (r)− E]f(r) = 0, (1)

df

dr
+ [m− V (r) + E]g(r) = 0 (2).

You may assume that

(σ · ∇)(σ · r̂)g(r) =
2g(r)

r
+

dg

dr
.

(b) Assume that the potential V (r) has the form

V (r) =

{
0 if r < R
V0 if r > R

.

Obtain a second-order differential equation satisfied by f(r) in the region r > R

and find its general solution.

(c) Show that a particle with energy E cannot be confined if the potential barrier

is too low, V0 < E −m, or too high, V0 > E +m.

(d) Suggest a reason why a high barrier is not able to confine the particle.
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6. The Dirac Hydrogen atom. [This is a harder question and should be tackled only

when you are happy with question 5 and the Klein-Gordon Hydrogen atom.] Start

from equations (1) and (2) in question 5(a) for the s 1
2

levels. Act on equation (1)

with d
dr

and on (2) with d
dr

+ 2
r
. You should end up with two nearly decoupled

equations, [
d2

dr2
+

2

r

d

dr
− 2

r2
−m2 + (E − V )2

]
g +

dV

dr
f = 0,[

d2

dr2
+

2

r

d

dr
−m2 + (E − V )2

]
f − dV

dr
g = 0.

Now consider the case of the Coulomb potential,

V (r) = − Zα

r
.

The two equations above are identical except for the 1/r2 terms, which can be

written in matrix form as

− 1

r2

(
−(Zα)2 Zα
−Zα 2− (Zα)2

)(
f
g

)
≡ − 1

r2
A

(
f
g

)
.

Find the eigenvalues of the matrix A and show that the positive one can be written

in the form l′(l′ + 1) where

l′ =
√

1− (Zα)2.

[You can discard the negative eigenvalue since it does not lead to solutions of the

differential equation which satisfy the appropriate boundary conditions.]

Call the corresponding eigenvector of A e+ (you do not need to find its detailed

form) and show that (
f(r)
g(r)

)
= f(r) e+

can be a solution to the equations above provided that f(r) satisfies the differential

equation [
d2

dr2
+

2

r

d

dr
− l′(l′ + 1)

r2
−m2 + E2 + 2E

Zα

r

]
f = 0.

This now has exactly the same form as the Schrödinger equation for the Hydrogen

atom, but with different constants. Proceed as we did in the Klein-Gordon case and

use the known energy levels for the Schrödinger atom to write down the levels for

the Dirac one. In the limit Zα << 1 you should find that the s 1
2

levels are

E '
[
1− (Zα)2

2n2
− Zα)4

2n4

(
n

2
− 3

4

)]
.

Comment on what happens to the energies for large Zα and suggest an expanation.

Mike Birse (January 2010)
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