
PC4602 RELATIVISTIC QUANTUM PHYSICS EXAMPLES 1

The problems on this sheet are intended to familiarise you with the use of natural units

and to refresh your knowledge of relevant ideas from relativity and quantum mechanics.

Questions 1 to 4 are on ideas that we shall be using right from the start of the course:

natural units and relativistic notation. You should try them as soon as possible. If you

find that your knowledge of special relativity is rusty, you should look at: W. Rindler,

Introduction to special relativity, 2nd edition (Oxford, 1991), Chapters IV–VI. If you feel

that you need to refresh your knowledge of nonrelativistic quantum mechanics, you should

also look at: S. Gasiorowicz, Quantum physics (Wiley, 1974), Chapters 3 and 4.

Question 5 (Pauli matrices) and 6 (the vector potential) are needed for the Dirac equation,

which we shall meet at the end of week 2. If you are unsure about these you should

study Gasiorowicz, Chapters 13 and 14. Question 7 (creation and annihilation operators)

should be done before we start setting up quantum field theory in week 4, and is covered

in Gasiorowicz, Chapter 7. Questions 8 (change of variables and the δ-function) and 9

(Schrödinger and Heisenberg pictures) are needed before we start using field theory in

week 6. The latter is also covered in Gasiorowicz, Chapter 7. You should work through

these chapters if the ideas in them are unfamiliar.

1. Show that the energy levels of the Hydrogen atom can be written in natural units

as

En = − α2m

2n2
,

where the fine structure constant is α = 1/137 and the mass of the electron is

m = 0.51 MeV. Check that this gives the usual numerical value for the ground state

energy in eV.

Show that the Bohr radius of the Hydrogen atom can be written in natural units as

a =
1

αm
.

Evaluate this in MeV−1. Convert this to more familiar length-based units with the

help of the very useful constant ~c ' 200 MeV fm.

2. Rewrite the relativistic energy-momentum relation as a dispersion relation con-

necting angular frequency ω and wave number k in natural units. Hence find the

corresponding group and phase velocities, and comment on your results.
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3. Two particles of mass m1 and m2 collide with 4-momenta

p1 = (E1,p1) and p2 = (E2,p2)

and produce two particles of mass m3 and m4 with 4-momenta

p3 = (E3,p3) and p4 = (E4,p4).

The kinematics of this scattering process may be described in terms of the Lorentz

invariant quantities (Mandelstam variables)

s = (p1 + p2)
2, t = (p1 − p3)

2 and u = (p1 − p4)
2.

Using conservation of 4-momentum, show that these satisfy

s + t + u = m2
1 + m2

2 + m2
3 + m2

4.

In the center-of momentum (cm) frame the incoming momenta are related by p2 =

−p1. The cm scattering angle θ is defined by p1 · p3 = |p1||p3| cos θ. Show that in

this frame we can write

s = (E1 + E2)
2, t = m2

1 + m2
3 − 2E1E3 + 2|p1||p3| cos θ.

4. (a) A frame S ′ moving along the x-axis with velocity v relative a frame S. The

space-time coordinates (t′,x′) of an event in S ′ are related to its coordinates

(t,x) in S by the Lorentz transformation

t′ =
1√

1− v2
(t− vx)

x′ =
1√

1− v2
(x− vt)

y′ = y

z′ = z

Write down the inverse transformation which relates (t,x) to (t′,x′). Use this

and the chain rule for partial differentiation to show that the gradient of a

scalar field φ(x),

∂µφ =

(
∂φ

∂t
,

∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

)
,

transforms as a covariant 4-vector.

(b) Evaluate the derivatives

∂µe−ip·x and ∂µ∂µe
−ip·x,

where p · x = pµx
µ = pµxµ. How does each of these objects transform under

Lorentz transformations?

2



5. The Pauli spin matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Evaluate their commutators [σi, σj] and their anticommutators {σi, σj}.

Show that the commutators can be expressed in the form

[σi, σj] = 2iεijkσk,

where εijk is the antisymmetric symbol (εijk = +1 if ijk is a cyclic permutation of

123, −1 if it is anticyclic, and 0 otherwise). Show also that the anticommutators

can be expressed in the form

{σi, σj} = 2δij1,

where 1 denotes the 2× 2 unit matrix.

Hence show that

(σ · a)(σ · b) = a · b + iσ · (a× b),

where a and b are 3-vectors.

6. A magnetic field can always be expressed in terms of a vector potential A as

B = ∇×A, since this guarantees that Gauss’s law is satisfied.

Verify that the potential

A = 1
2
B0 × x

corresponds to a uniform magnetic field B0.

The Hamiltonian for a nonrelativistic particle of charge q moving in the presence of

this field is

H =
(p− qA)2

2m
,

where p = −i∇ is the momentum operator. Show that this Hamiltonian can be

written in the form

H =
p2

2m
− q

2m
B0 · L +

q2

8m

(
|x|2|B0|2 − (x ·B0)

2
)
,

where L = −ix × ∇ is the orbital angular momentum operator. Give a physical

interpretation for the second term in H.
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7. What is the commutator of the one-dimensional position and momentum operators,

x and p, in natural units? These operators can be written in terms of creation and

annihilation operators, a† and a, as

x =
1√
2ω

(a + a†) and p = −i

√
ω

2
(a− a†).

Find the commutator of a and a†.

A quantum mechanical harmonic oscillator has the Hamiltonian

H =
1

2
p2 +

1

2
ω2x2.

Express this in terms of a and a† and hence find the energy eigenvalues and eigen-

states of H.

8. The Dirac δ-function of a function f(x) is equivalent to a sum of δ-functions of x

at the zeros of f(x):

δ
(
f(x)

)
=

∑
i

1

|f ′(xi)|
δ(x− xi),

where f(xi) = 0.

When integrating over the invariant phase space of a relativistic particle, we shall

meet integrals of the form∫
dk0 d3k δ

(
(k0)2 − k2 −m2

)
G(k0,k),

where G is some function of the 4-momentum of the particle and the δ-function

enforces the condition k2 = m2. Using the above property of the δ-function, show

that this integral may be rewritten in the form∫
d3k

2
√

k2 + m2

[
G

(√
k2 + m2,k

)
+ G

(
−
√

k2 + m2,k
)]

.

9. The time evolution of a quantum system is governed by its Hamiltonian. Outline

how this idea is implemented in (a) the Schrödinger picture and in (b) the Heisenberg

picture.

Mike Birse (December 2009)
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