PHYS30201 Mathematical Fundamentals of Quantum Mechanics Examples 5

1. A particle of mass m moves in the 1D potential

Vi) =

00 elsewhere

{—Asin(m:/a) for0<z<a

Treating this as a perturbation on an infinite square well, calculate the first-order shift in

the ground state energy.

2. Consider each of the following two-state systems. In each case calculate the energies to

second order in A, and check your answers against the expansions of the exact results. In

. A EY A . - 2\ A
(1) H — ( ;\* Eéo) ) y (11) H — ( )\ Eéo)> .

For (i), calculate also the first-order shifts in the eigenvectors, and again compare them with

(ii) A is real.

the exact results. (This is easier if you don’t normalise.)
[Hint: write each Hamiltonian as H® + HY, where H® = H(\ = 0).]

3. A two-state system has three terms in its Hamiltonian, ﬁo, H, and H,. In some basis, the

corresponding matrices are

- Ey, 0 - —a 0 - b —b
H0—><OEO), Ha—>( 0@), Hb—>(_b b)'
For a >> b, let H® = Hy + H, and calculate the first- and second-order energy shifts due to
H,

For a < b, let H® = Hy + H,. Find the eigenvectors of H®, and then calculate the first-

and second-order energy shifts due to H,.

Find the exact eigenvalues of FIO + f]a + ]':[b and show that the previous results are obtained
in the appropriate limits. Hence explain why those results fail as b and a approach the same

magnitude.

4. For Q1 above, explain why the most significant part of the first-order change in the wave
function is given by —(ﬁ/lSW)\/gsin 312 where 3 = A(2ma?)/(h*7?). Show that this lowers
the energy compared with the first-order result, and give the corresponding estimate for the
second-order energy shift.

[You may use the integral, [ sin(nz) sin*zdz = —ﬁ for odd n.]

5. Consider a 1D harmonic oscillator with a perturbation H® = \# (which could be due to
an electric field). Show that there is no first-order energy shift for any state. Calculate the
first-order shift in the eigenstates, and the second-order shift in their, for all states.

[Hint: don’t forget about raising and lowering operators!]



In this case, exact results can be obtained by writing the potential in the form

V(z) = smw?s? + Az = smw?(z — 0)% — ¢,

where § and € depend on A. This is just another quadratic potential shifted to the right by
0 and with an energy offset —e. Use this to check your results for the energies, and for the

ground-state wave function.

Challenge: repeat the calculation of the ground-state energy for H® = )\#3. Comment on
whether you expect this method to be reliable for all values of n, and on what might be

wrong with it even for n = 0. [Hint: sketch the potential.]

. A three-state system has an unperturbed Hamiltonian H® and is subject to a perturbation

H® . In the basis of the eigenstates of H®, the corresponding matrices are:

) E” 0 0 A 0 b a
H> — | 0 EY 0 |, HY”—[b0a
0 0 EY a a 0

Calculate the first-order energy shifts and eigenstate shifts of all three states:

i) when E\”, E” and EY” are all different;

ii) when E\” = EY”.

For case ii), compare with your results with the exact ones. (As in Q2, this is easier if you

don’t normalise. )

. The unperturbed states of the symmetric 2D harmonic oscillator can be denoted |n, n,) with
energy £ = (n, +n, + 1)hw; states with the same n, + n, are degenerate. Now consider a

perturbation H® = AZ7. Show that there is no first-order shift in the ground-state energy.
Show that the states with E® = 2Aw are mixed by this perturbation, and that in the

subspace of these states the perturbation can be written
- hA 0 1
HY — —— .
2mw ( 1o )
Hence find the perturbed energies to first order in A. By considering the shape of the

perturbed potential and the zeroth-order wave functions of the two states, explain why this

perturbation lifts the degeneracy and why one state is higher in energy than the other.
Now find the second-order energy shifts for these states.

Challenge: explain why perturbations which are functions of = or y only, or which consist of
sums of such terms, do not mix the degenerate states |n,, n,), and so can be handled in non-
degenerate perturbation theory. Consider the current problem using coordinates \/g (xty),
and (without detailed calculation) explain your results with reference to the example in

section 4.1.3 of the lectures.



10.

11.

12.

13.

Calculate the fine-structure shifts in the energies of the 42ps/» states of i) *Li*" and ii)

positronium.

Challenge: calculate the leading relativistic correction to the energy levels of the 1D harmonic

oscillator.

The first excited levels of calcium have their valence electrons in a (4s)! (4p)! configuration.
In a particular experiment three of these are seen, with energies 1.87908 eV, 1.88555 eV and
1.89868 eV. Assuming that they are split by the spin-orbit interaction,

deduce the angular-momentum quantum numbers (L, S and J) of these levels. Compare

the ratio of their splittings with the prediction of first-order perturbation theory.

Challenge, and extra practice with using Clebsch-Gordan coefficients: A system has or-
bital angular momentum [ and spin s. Its eigenstates of total angular momentum J2 and
J, are denoted l,s;7,m;). The calculation of the Landé ¢ factor uses the result that
(1,557, mjlgz\l, s; j,m;) must be proportional to (I, s; 7, mj|jz|l, s; j,m;), which follows from
the Wigner-Eckart theorem discussed in section 2.6. For a system with spin—%, the result

can be demonstrated directly from the expressions for these states:

I+14 4L Fm;
‘lmv%mﬂ + 21+In]|l 2>®|%’%>+ Q%Iinjylvmj"‘%)@’%’_%)’

for j =1+ i. Using these, find (S,) and show that it is equal to hm;(S - J)/(J?).
[Hint: treat the cases j =1+ 3 and j =1 — 5 separately.]

Two non-identical Spin—% particles, p and n, are in an s-wave bound state, and experience an
interaction whose effective form is H® = —AS® . S Write down expressions for the four

spin states of the system which are eigenstates of this Hamiltonian, and give their energies.

The system is now placed in a weak magnetic field, which adds to the Hamiltonian a term

MNB

gm:( S g(n>>
8 h

Find the first-order energy shifts due to the magnetic field.

Calculate the Landé g factor for a nucleus with an unpaired nucleon, Spln-—, in a subshell
with orbital angular momentum [ and total angular momentum j. [Hint: leave the orbital

and spin g factors general, so you can treat both proton and neutron cases together.]

Extra practice: Calculate the Landé g factor for an odd-odd nucleus where the unpaired
proton and neutron have angular momenta j; and j,, with g factors g; and g9, and are

coupled to total angular momentum J.



14.

15.

16.

17.

Calculate the weak-field Zeeman shifts for all the n = 1 and n = 2 states of hydrogen and
draw a level diagram. Mark all the transitions consistent with the Al =1, Am; = —1,0,1

rule, and list the frequencies.

Now calculate the strong-field Zeeman shifts for the n = 1,2 states and draw the levels for
this case.
Hint: in this case you should ignore fine structure. Think about what this implies for the

basis you use.].

Find the magnitude of the electric field that would be required to induce a splitting of 1 meV
between the n = 2 states of hydrogen. How large would the shift in the ground state be for
that field?

If an electric field is very weak, we cannot ignore the fine-structure splitting when calculating
the Stark effect. Consider the four degenerate states of hydrogen with n = 2 and j = 1/2:
|0, %; %, i%> and |1, %; %, i%> (in the notation |l, s; j, m;). Use degenerate perturbation theory
in this space to show that for a very weak electric field, the Stark effect shifts the energy
levels by ++v/3ao|e|€).

[Hint: first write the states in terms of the {|l,m;) ® |s,ms)} basis. Show that only pairs of
states with the same m; are mized. Then show that, for either pair, the perturbing term in

the Hamiltonian is:

HY — \3aglel& < (1) (1] ) .

Challenge: the following trick allows an exact calculation of the Stark shift for the ground
state of hydrogen. Starting with the more general formalism, suppose we find an operator
Q such that H®|0©) = [Q, H®]|0©). Show that we can write

0§ (0O ) [, )0
B =3

— 2 a (1> A
E(()O) _ Efv? — <0(0)|H(1)Q’0(0)> _ EO <0(O)|Q|0(0)>,

m#0

[Hint: use the identity 3, |m@)(m©| = I —109)(0®]. ]
Now show that if H® —s —q.&2, the operator {§ —» (magqeﬁ/ﬁ?)(%W + agr) cos § works.

(Don’t try to construct it, just verify that it satisfies the required relation to H ().) Here the

charge of the electron is ¢. = —|e.

Using this result, calculate E{”.



