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1. A particle of mass m moves in the 1D potential

V (x) =

{
−λ sin(πx/a) for 0 < x < a

∞ elsewhere
.

Treating this as a perturbation on an infinite square well, calculate the first-order shift in

the ground state energy.

2. Consider each of the following two-state systems. In each case calculate the energies to

second order in λ, and check your answers against the expansions of the exact results. In

(ii) λ is real.

(i) Ĥ −→
(
E(0)

1 λ
λ∗ E(0)

2

)
, (ii) Ĥ −→

(
2λ λ
λ E(0)

2

)
.

For (i), calculate also the first-order shifts in the eigenvectors, and again compare them with

the exact results. (This is easier if you don’t normalise.)

[Hint: write each Hamiltonian as Ĥ (0) + Ĥ (1), where Ĥ (0) = Ĥ(λ = 0).]

3. A two-state system has three terms in its Hamiltonian, Ĥ0, Ĥa and Ĥb. In some basis, the

corresponding matrices are

Ĥ0 −→
(
E0 0

0 E0

)
, Ĥa −→

(
−a 0

0 a

)
, Ĥb −→

(
b −b
−b b

)
.

For a� b, let Ĥ (0) = Ĥ0 + Ĥa and calculate the first- and second-order energy shifts due to

Ĥb.

For a � b, let Ĥ (0) = Ĥ0 + Ĥb. Find the eigenvectors of Ĥ (0), and then calculate the first-

and second-order energy shifts due to Ĥa.

Find the exact eigenvalues of Ĥ0 + Ĥa + Ĥb and show that the previous results are obtained

in the appropriate limits. Hence explain why those results fail as b and a approach the same

magnitude.

4. For Q1 above, explain why the most significant part of the first-order change in the wave

function is given by −(β/15π)
√

2
a

sin 3πx
a

, where β = λ(2ma2)/(~2π2). Show that this lowers

the energy compared with the first-order result, and give the corresponding estimate for the

second-order energy shift.

[You may use the integral,
∫ π
0

sin(nx) sin2xdx = − 4
n(n2−4) for odd n.]

5. Consider a 1D harmonic oscillator with a perturbation Ĥ (1) = λx̂ (which could be due to

an electric field). Show that there is no first-order energy shift for any state. Calculate the

first-order shift in the eigenstates, and the second-order shift in their, for all states.

[Hint: don’t forget about raising and lowering operators! ]



In this case, exact results can be obtained by writing the potential in the form

V (x) = 1
2
mω2x2 + λx = 1

2
mω2(x− δ)2 − ε,

where δ and ε depend on λ. This is just another quadratic potential shifted to the right by

δ and with an energy offset −ε. Use this to check your results for the energies, and for the

ground-state wave function.

Challenge: repeat the calculation of the ground-state energy for Ĥ (1) = λx̂3. Comment on

whether you expect this method to be reliable for all values of n, and on what might be

wrong with it even for n = 0. [Hint: sketch the potential.]

6. A three-state system has an unperturbed Hamiltonian Ĥ (0) and is subject to a perturbation

Ĥ (1). In the basis of the eigenstates of Ĥ (0), the corresponding matrices are:

Ĥ (0) −→

 E(0)

1 0 0
0 E(0)

2 0
0 0 E(0)

3

 , Ĥ (1) −→

 0 b a
b 0 a
a a 0

 .

Calculate the first-order energy shifts and eigenstate shifts of all three states:

i) when E(0)

1 , E(0)

2 and E(0)

3 are all different;

ii) when E(0)

1 = E(0)

2 .

For case ii), compare with your results with the exact ones. (As in Q2, this is easier if you

don’t normalise.)

7. The unperturbed states of the symmetric 2D harmonic oscillator can be denoted |nx, ny〉 with

energy E(0) = (nx +ny + 1)~ω; states with the same nx +ny are degenerate. Now consider a

perturbation Ĥ (1) = λx̂ŷ. Show that there is no first-order shift in the ground-state energy.

Show that the states with E(0) = 2~ω are mixed by this perturbation, and that in the

subspace of these states the perturbation can be written

Ĥ (1) −→ ~λ
2mω

(
0 1
1 0

)
.

Hence find the perturbed energies to first order in λ. By considering the shape of the

perturbed potential and the zeroth-order wave functions of the two states, explain why this

perturbation lifts the degeneracy and why one state is higher in energy than the other.

Now find the second-order energy shifts for these states.

Challenge: explain why perturbations which are functions of x or y only, or which consist of

sums of such terms, do not mix the degenerate states |nx, ny〉, and so can be handled in non-

degenerate perturbation theory. Consider the current problem using coordinates
√

1
2
(x±y),

and (without detailed calculation) explain your results with reference to the example in

section 4.1.3 of the lectures.



8. Calculate the fine-structure shifts in the energies of the 4 2p3/2 states of i) 3Li++ and ii)

positronium.

9. Challenge: calculate the leading relativistic correction to the energy levels of the 1D harmonic

oscillator.

10. The first excited levels of calcium have their valence electrons in a (4s)1 (4p)1 configuration.

In a particular experiment three of these are seen, with energies 1.87908 eV, 1.88555 eV and

1.89868 eV. Assuming that they are split by the spin-orbit interaction,

Ĥs.o. =
E

~2
L̂ · Ŝ,

deduce the angular-momentum quantum numbers (L, S and J) of these levels. Compare

the ratio of their splittings with the prediction of first-order perturbation theory.

11. Challenge, and extra practice with using Clebsch-Gordan coefficients: A system has or-

bital angular momentum l and spin s. Its eigenstates of total angular momentum Ĵ2 and

Ĵz are denoted |l, s; j,mj〉. The calculation of the Landé g factor uses the result that

〈l, s; j,mj|Ŝz|l, s; j,mj〉 must be proportional to 〈l, s; j,mj|Ĵz|l, s; j,mj〉, which follows from

the Wigner-Eckart theorem discussed in section 2.6. For a system with spin-1
2
, the result

can be demonstrated directly from the expressions for these states:

|l, 1
2
; j,mj〉 = ±

√
l+ 1

2
±mj

2l+1
|l,mj − 1

2
〉 ⊗ |1

2
, 1
2
〉+

√
l+ 1

2
∓mj

2l+1
|l,mj + 1

2
〉 ⊗ |1

2
,−1

2
〉,

for j = l ± 1
2
. Using these, find 〈Ŝz〉 and show that it is equal to ~mj〈Ŝ · Ĵ〉/〈Ĵ2〉.

[Hint: treat the cases j = l + 1
2

and j = l − 1
2

separately.]

12. Two non-identical spin-1
2

particles, p and n, are in an s-wave bound state, and experience an

interaction whose effective form is Ĥ (0) = −AŜ(p) · Ŝ(n). Write down expressions for the four

spin states of the system which are eigenstates of this Hamiltonian, and give their energies.

The system is now placed in a weak magnetic field, which adds to the Hamiltonian a term

Ĥ (1) =
(
gpŜ

(p)
z + gnŜ

(n)
z

)µNB
~

.

Find the first-order energy shifts due to the magnetic field.

13. Calculate the Landé g factor for a nucleus with an unpaired nucleon, spin-1
2
, in a subshell

with orbital angular momentum l and total angular momentum j. [Hint: leave the orbital

and spin g factors general, so you can treat both proton and neutron cases together.]

Extra practice: Calculate the Landé g factor for an odd-odd nucleus where the unpaired

proton and neutron have angular momenta j1 and j2, with g factors g1 and g2, and are

coupled to total angular momentum J .



14. Calculate the weak-field Zeeman shifts for all the n = 1 and n = 2 states of hydrogen and

draw a level diagram. Mark all the transitions consistent with the ∆l = 1, ∆mj = −1, 0, 1

rule, and list the frequencies.

Now calculate the strong-field Zeeman shifts for the n = 1, 2 states and draw the levels for

this case.

Hint: in this case you should ignore fine structure. Think about what this implies for the

basis you use.].

15. Find the magnitude of the electric field that would be required to induce a splitting of 1 meV

between the n = 2 states of hydrogen. How large would the shift in the ground state be for

that field?

16. If an electric field is very weak, we cannot ignore the fine-structure splitting when calculating

the Stark effect. Consider the four degenerate states of hydrogen with n = 2 and j = 1/2:

|0, 1
2
; 1
2
,±1

2
〉 and |1, 1

2
; 1
2
,±1

2
〉 (in the notation |l, s; j,mj〉. Use degenerate perturbation theory

in this space to show that for a very weak electric field, the Stark effect shifts the energy

levels by ±
√

3a0|e|E).

[Hint: first write the states in terms of the {|l,ml〉 ⊗ |s,ms〉} basis. Show that only pairs of

states with the same mj are mixed. Then show that, for either pair, the perturbing term in

the Hamiltonian is:

Ĥ (1) −→
√

3a0|e|E
(

0 1
1 0

)
. ]

17. Challenge: the following trick allows an exact calculation of the Stark shift for the ground

state of hydrogen. Starting with the more general formalism, suppose we find an operator

Ω̂ such that Ĥ (1)|0(0)〉 = [Ω̂, Ĥ (0)]|0(0)〉. Show that we can write

E(2)

0 =
∑
m6=0

〈0(0)|Ĥ (1)|m(0)〉〈m(0)|[Ω̂, Ĥ (0)]|0(0)〉
E(0)

0 − E
(0)
m

= 〈0(0)|Ĥ (1)Ω̂|0(0)〉 − E(1)

0 〈0(0)|Ω̂|0(0)〉.

[Hint: use the identity
∑

m 6=0 |m(0)〉〈m(0)| = Î − |0(0)〉〈0(0)|. ]

Now show that if Ĥ (1) −→
r
−qeEz, the operator Ω̂ −→

r
(ma0qeE/~2)(12r

2 + a0r) cos θ works.

(Don’t try to construct it, just verify that it satisfies the required relation to Ĥ (1).) Here the

charge of the electron is qe = −|e|.

Using this result, calculate E(2)

0 .


