
PHYS30201 Mathematical Fundamentals of Quantum Mechanics Examples 4

1. A particle has spin s = 3
2

and orbital angular momentum l = 1. List all the allowed values

of {ms,ml}. List also all the allowed values of {j,mj}, where Ĵ denotes the total angular-

momentum operator of the system. Check that the two lists are equal in length, and also that

there are the same number of pairs with a given mj in the second list as with a given ms +ml

in the first.

2. A system has two contributions to its angular momentum, both with j = 1. The state |α〉 is

defined as

|α〉 =
√

1
2
|1, 0〉 ⊗ |1,−1〉 −

√
1
2
|1,−1〉 ⊗ |1, 0〉.

Show that |α〉 is an eigenstate of Ĵ2 = Ĵ+Ĵ−+ Ĵ2
3 − ~Ĵ3, and find the total-angular-momentum

quantum number J .

[Hint: use Ĵi = Ĵ (1)

i + Ĵ (2)

i (strictly Ĵ (1)

i ⊗ Î (2) + Î (1) ⊗ Ĵ (2)

i ).]

3. A system has two contributions to its angular momentum: j1 = 3/2 and j2 = 1. These can

couple up to various values of the total angular momentum, which we denote by J . Using a

table from the PDG review or other source of Clebsch-Gordan coefficients:

i) write down the expansions of the following eigenstates of total angular momentum |J,M〉 in

terms of the states |j1,m1〉 ⊗ |j2,m2〉:

(a) |5/2, 3/2〉, (b) |1/2,−1/2〉;

ii) write down the expansions of the following states of given m1 and m2 in terms of the

eigenstates of total angular momentum |J,M〉:

(c) |3/2, 3/2〉 ⊗ |1, 0〉, (d) |3/2, 1/2〉 ⊗ |1,−1〉.

Now consider a spin-3
2

particle in a p-wave orbital.

iii) Assume that measurements of the total angular momentum have determined its quantum

numbers to be J = 1
2

and M = −1
2
. If the z-component of orbital angular momentum is

now measured, what values of ml may be found, and with what probabilities? In each case,

what would a subsequent measurement of the z-component of the spin give?

iv) Now assume that the z-components of the orbital and spin angular momenta have been

measured and the associated quantum numbers are ml = −1 and ms = 1
2
. If the total angular

momentum is now measured, what values of J may be found, and with what probabilities?

4. A system consists of two particles, both with s = 1. Using a table or other source of Clebsch-

Gordan coefficients, write down the expansion of the three eigenstates of total spin angular

momentum |S,M〉 with M = 0 in terms of the states |s1,m1〉 ⊗ |s2,m2〉. What changes if the

particles are identical and have relative orbital angular momentum l = 0?

Challenge: find a general rule for the total spin of two identical particles with any spin.



5. In the lectures we looked at the variational calculation for the potential V (x) = βx4. Fill in

the details, using as your trial wavefunction Ψ(x) = e−ax
2/2. [You should get an upper bound

for the ground-state energy of (3/8)61/3 = 0.68 in units of (~4β/m2)1/3.]

6. A particle moves in a potential V (x) = βx for x > 0 and V (x) = ∞ for x < 0. Sketch the

potential and the rough form of the ground-state solution. Use an appropriate state of the

harmonic oscillator as a trial function (with x0 as a variational parameter) to obtain an upper

bound on E0. Try any other suitable trial function you can think of and see if it gives a better

bound. [Hint: the exact answer is 2.338( ~2β2/2m)1/3. If you make the wrong choice of trial

function, you may get an answer below this. Think carefully about what might have gone wrong,

and why the variational principle is not violated.]

Challenge: the solution to the differential equation y′′(z) − zy(z) + µy(z) = 0 can be written

in terms of Airy functions as: y = CAi(z − µ) + DBi(z − µ). (These are special functions

whose roots can be found only numerically; see the appendices to the lecture notes for a brief

introduction.) Using Mathematica (or a handbook of special functions) explore these solutions,

and reproduce the exact result quoted above.

7. Consider the three-dimensional problem with potential V (r) = −βe−µr/r. For finite µ, this

potential has no bound-state solutions if it is too weak. (This is typically the case in 3D.) Use

a trial wave function Ψ(r) = e−r/a to find a value of β/µ, above which at least one bound state

is guaranteed. What can we say in the µ→ 0 limit?

8. Use the WKB approximation to find values for the energy levels of the potential in Q6.

9. In lectures, we saw that the WKB approximation gives the exact expression for the energy

levels of the harmonic oscillator. Fill in the details to obtain this result given.

[Hint: you will need the integral
∫ √

c2 − x2 dx = 1
2

(
x
√
c2 − x2 + c2 arcsin(x/c)

)
; use the substi-

tution x = c sin θ to show this.]

Challenge: show that the Schrödinger equation for a particle with l = 0 in a spherical harmonic-

oscillator well V (r) = 1
2
mω2r2 is equivalent to a 1D Schrödinger equation for u(r) = rψ(r),

subject to the boundary condition that u(0) = 0. Hence show (with negligible extra work) that

the energy levels of this system in the WKB aproximation are E = (2n + 3
2
) ~ω. (In fact this

result is also exact; you should be able to explain it in terms of your prior knowledge of the

harmonic oscillator.)

10. Use the WKB approximation to show that, for two protons colliding with center-of-mass energy

E, the probability of fusion is roughly exp[−(rc/RG)1/2], where RG is the energy-independent

Gamow radius, RG = ~/(π2mpcα), and rc(E) is the classical distance of closest approach. You

should assume that rc is much greater than the proton radius.

Estimate the probabilities of proton-proton fusion (a) at the surface of the Sun (∼6000 K), and

(b) at the centre of the Sun (∼ 107 K).


