1. From the definitions $\hat{J}_{\pm} \equiv \hat{J}_1 \pm i\hat{J}_2$ and the basic commutation relations between the angular momentum operators, \hat{J}_i , prove the following:

(i)
$$[\hat{J}_{+}, \hat{J}_{-}] = 2\hbar \hat{J}_{3},$$
 (ii) $[\hat{J}_{3}, \hat{J}_{+}] = \hbar \hat{J}_{+},$

(iii)
$$\hat{\mathbf{J}}^2 = \hat{J}_+ \hat{J}_- + \hat{J}_3^2 - \hbar \hat{J}_3$$
, (iv) $[\hat{\mathbf{J}}^2, \hat{J}_{\pm}] = 0$.

2. In spherical polar coordinates, the angular momentum operators are

$$\hat{L}_{+} \longrightarrow \hbar \mathrm{e}^{\mathrm{i}\phi} \left(\frac{\partial}{\partial \theta} + \mathrm{i}\cot\theta \frac{\partial}{\partial \phi} \right), \quad \hat{L}_{-} \longrightarrow \hbar \mathrm{e}^{-\mathrm{i}\phi} \left(-\frac{\partial}{\partial \theta} + \mathrm{i}\cot\theta \frac{\partial}{\partial \phi} \right), \quad \hat{L}_{z} \longrightarrow -\mathrm{i}\hbar \frac{\partial}{\partial \phi}.$$

- (a) Check that $[\hat{L}_z, \hat{L}_{\pm}] = \pm \hbar \hat{L}_{\pm}$.

 [Hint: remember that differential operators need to act on something!]
- (b) For a given l, the spherical harmonic with m = l is proportional to $(x + iy)^l$:

$$Y_l^l(\theta, \phi) = (-1)^l N_l \sin^l \theta e^{il\phi}, \quad \text{with} \quad N_l = \frac{\sqrt{(2l+1)!}}{\sqrt{4\pi} 2^l l!}.$$

Use this to obtain forms for all the l=2 spherical harmonics.

[Hint: use $Y_l^{-m} = (-1)^m (Y_l^m)^*$ to reduce the work needed.]

- (c) Check that $\hat{L}_+ Y_l^l = 0$.
- 3. A particle has angular momentum l = 1. In the L_z basis, where $(1,0,0)^{\top}$ corresponds to Y_1^1 , $(0,1,0)^{\top}$ to Y_1^0 , and $(0,0,1)^{\top}$ to Y_1^{-1} , the angular momentum operators are

$$\hat{L}_x \xrightarrow{L_z} \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \hat{L}_y \xrightarrow{L_z} \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix}$$

- (a) Using the differential operators in Q2, calculate $\int Y_1^{1*} \hat{L}_x Y_1^0 d\Omega$, and hence verify two of the elements of the first matrix.
- (b) In Q4 of Examples 1, we found the eigenvectors of the matrix representing \hat{L}_x . Use these to write down the position-space representation of the state with l=1 which will give zero when L_x is measured.
- (c) Similarly in Q12 of Examples 2, we found the eigenvectors of the matrix representing \hat{L}_y ; use these to write down the position-space representation of the state which will give zero when L_y is measured. Comment on your results for (b) and (c).

- 4. A particle with angular momentum l=1 passes through a sequence of Stern-Gerlach devices that measure components of its angular momentum. Use the eigenvectors from the previous question to find the probabilities that:
 - (i) the z component of angular momentum will be found to be $+\hbar$, given that the x component was previously found to be 0;
 - (ii) the x component will be found to be $-\hbar$, given that the z component was previously found to be $+\hbar$:
 - (iii) the y component will be found to be $-\hbar$, given that the x component was previously found to be $+\hbar$.
 - (iv) the z component will be found to be 0, given that the y component was previously found to be 0.
- 5.(a) Verify the commutation relations for the matrices $S_i = \frac{\hbar}{2}\sigma_i$, where σ_i are the Pauli matrices.
 - (b) Show that if **a** and **b** are real 3D vectors, $(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma}) = \mathbf{a} \cdot \mathbf{b} \mathbf{I} + i \boldsymbol{\sigma} \cdot \mathbf{a} \times \mathbf{b}$, where **I** is the identity matrix.
 - (c) Verify that any 2×2 Hermitian matrix can be written as $a_0 \mathbf{I} + \mathbf{a} \cdot \boldsymbol{\sigma}$, where a_0, \ldots, a_3 are four real numbers.
- 6. Consider a spin- $\frac{1}{2}$ system.
 - (a) What are the eigenvalues of \hat{S}_x and \hat{S}_y ? In the S_z basis, where $\hat{S}_i \longrightarrow \frac{\hbar}{2} \sigma_i$, find the corresponding eigenvectors (the representations of $|\hat{\mathbf{x}}\pm\rangle$ and $|\hat{\mathbf{y}}\pm\rangle$).
 - (b) In a Stern-Gerlach experiment similar to the one depicted in Q5 of Examples 2, A and B represent measurements of components of spin along some pair of the $\{x, y, z\}$ axes (e.g. $\hat{A} = \hat{S}_x$ and $\hat{B} = \hat{S}_y$). Verify that the same probabilities are obtained for any pair of these axes.

[Hint: you should not have to calculate more than three overlaps.]

- (c) Find the matrix representations of \hat{S}_x , \hat{S}_y and \hat{S}_z in the S_x basis (where $|\hat{\mathbf{x}}+\rangle \longrightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$) and $|\hat{\mathbf{x}}-\rangle \longrightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$). Find also the representations of $|\hat{\mathbf{y}}\pm\rangle$ and $|\hat{\mathbf{z}}\pm\rangle$ in this basis. [Hint: either use the expressions in the S_z representation to find the required components, such as $\langle \hat{\mathbf{x}}\pm|\hat{S}_y|\hat{\mathbf{x}}\pm\rangle$ and $\langle \hat{\mathbf{x}}\pm|\hat{\mathbf{y}}+\rangle$ for the representations of \hat{S}_y and $|\hat{\mathbf{y}}+\rangle$ respectively, or construct the unitary matrix that transforms the basis.]
- 7.(a) If Q5 of Examples 2 describes measurements on a spin- $\frac{1}{2}$ particle, the operator \hat{A} in the question is $(2/\hbar)\hat{S}_z$. What is \hat{B} ?
 - (b) Working in the S_z representation for a spin- $\frac{1}{2}$ system, construct the matrices that represent $\hat{S}_{y'}$ and $\hat{S}_{z'}$, which are the components of the spin in the directions:

$$\mathbf{e}'_y = \cos \alpha \, \mathbf{e}_y + \sin \alpha \, \mathbf{e}_z$$
 and $\mathbf{e}'_z = \cos \alpha \, \mathbf{e}_z - \sin \alpha \, \mathbf{e}_y$.

Find $[\hat{S}_{y'}, \hat{S}_{z'}]$ and comment on your result.

8. For a spin- $\frac{1}{2}$ system:

(a) Verify that $\langle \hat{\mathbf{n}} + | \hat{\mathbf{S}} | \hat{\mathbf{n}} + \rangle = \frac{\hbar}{2} \hat{\mathbf{n}}$ (i.e. the expectation value of the vector operator $\hat{\mathbf{S}}$ is parallel to $\hat{\mathbf{n}}$).

(b) Find the spin-up eigenstate of $\hat{\mathbf{S}} \cdot \hat{\mathbf{n}}$ for:

(i)
$$\hat{\mathbf{n}} = (-1, 0, \sqrt{3})/2$$
,

(ii)
$$\hat{\mathbf{n}} = (1, 1, \sqrt{2})/2$$
?

In each case, if the system starts in this state, find the probability of obtaining $+\hbar/2$ when a measurement of S_x is made.

9. For a spin- $\frac{3}{2}$ system, construct the matrices representing \hat{S}_x , \hat{S}_y , \hat{S}_z in the S_z basis. [Hint: find the representation of \hat{S}_+ as an intermediate step.]