PHYS30201 Mathematical Fundamentals of Quantum Mechanics Examples 2

- 1. A particle is in a state $|\psi\rangle$ when the observable corresponding to $\hat{\Omega}$ is measured. Show that the following two statements are equivalent:
	- (I) the probability of getting a result ω_i is $|\langle \omega_i | \psi \rangle|^2$;
	- (II) the expectation value (ensemble average) is $\langle \psi | \hat{\Omega} | \psi \rangle$.

[Do NOT assume that $|\psi\rangle$ is an eigenstate of $\hat{\Omega}$ – the equivalence is trivial in that case.]

2. At a given time, a particle is in a state $|\phi_0\rangle$, with

$$
\phi_0(x) = \left(\frac{1}{\sqrt[4]{\pi a^2}}\right) e^{-x^2/2a^2},
$$

and $a = \sqrt{\hbar/m\omega}$. A measurement is made of the momentum. What is the probability of getting an answer within a small range $\delta p = \hbar/100a$ centred on the value \hbar/a ?

3. A hydrogen atom is prepared in an initial state described by the wave function

$$
\psi_I(\mathbf{r}) = \frac{1}{\sqrt{96\pi a_0^5}} r \exp\left(-\frac{r}{2a_0}\right),\,
$$

where a_0 is the Bohr radius. A measurement is made of the energy.

What is the probability of obtaining the ground state energy, -13.6 eV ?

What other values of the energy might be obtained?

What would the probability be if instead the initial state were $\sqrt{3}\cos(\theta)\psi_I(\mathbf{r})$?

[Hint: You will need the ground-state wave function of hydrogen to answer this; it is proportional to $\exp(-r/a_0)$. The first answer works out as about 0.23.]

4. In a particular orthonormal basis, the Hamiltonian of a certain system is represented by

$$
\hat{H} \longrightarrow \frac{\mu \hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.
$$

Construct the representation of the propagator $\hat{U}(t, 0)$ in the same basis, and hence find the subsequent state vectors for:

(i) $|\psi(0)\rangle \longrightarrow (0, 1, 0)^\top$, (ii) $|\psi(0)\rangle \longrightarrow (1, 0, -1)^\top$ / √ 2.

The eigenvectors of the matrix representation of \hat{H} were obtained in Q4(i) of Examples 1. Show that your results can also be obtained by first decomposing $|\psi(0)\rangle$ in the eigenbasis of \hat{H} .

The picture above represents a series of measurements of observables associated with operators \hat{A} and \hat{B} , each of which has only two eigenvalues, ± 1 . In the basis $\{|a+\rangle, |a-\rangle\}$ the operators are given by

$$
\hat{A} \xrightarrow[a \text{ and } 1 \text{ and } 0 \text{ and } 0 \text{ and } \hat{B} \xrightarrow[a \text{ and } 1 \text{ and } 0 \text
$$

where θ is some real parameter. At each step, give the fraction of particles for which the measurement yields 1 or -1 .

[Hint: first show that the eigenvectors of \hat{B} can be represented as follows:

$$
|b+\rangle \longrightarrow \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \qquad |b-\rangle \longrightarrow \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix};
$$

see also Q3(iv) of Examples 1.]

6. Use Ehrenfest's theorem to show that for the one-dimensional harmonic oscillator in any state (not necessarily a stationary state),

$$
m\frac{\mathrm{d}^2\langle\hat{x}\rangle}{\mathrm{d}t^2} = -k_s\langle\hat{x}\rangle,
$$

where k_s is the spring constant. Comment on this result.

- 7. Consider a system with Hamiltonian $\hat{H} = \hbar \gamma \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and an observable $\hat{\Omega} = \frac{\hbar}{2}$ $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Check that the state $\begin{pmatrix} \cos \gamma t \\ -i \sin \gamma t \end{pmatrix}$ is a solution of the time-dependent Schrödinger equation, and verify that Ehrenfest's theorem holds for the expectation value of $\hat{\Omega}$.
- 8. A particle of mass m is bound by a potential $V(\mathbf{r})$. Show that if the potential is spherically symmetric, $V = V(r)$, the expectation value of the angular momentum is conserved. [You may use the commutation relations from Q8 of Examples 1.]

Now consider a non-spherically-symmetric potential $V = V_0(r) + zV_1(r)$. Show that $\langle \hat{L}_z \rangle$ is still conserved, and that

$$
\frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{L}_x \rangle = -\langle \hat{y} \hat{V}_1 \rangle \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{L}_y \rangle = \langle \hat{x} \hat{V}_1 \rangle
$$

Check that the right-hand sides correspond to the expectation values of the components of the torque, as expected.

- 9. This question uses the raising and lowering operators for the harmonic oscillator, \hat{a}^{\dagger} and \hat{a} .
	- i) Verify the numerical coefficients in the expressions $\hat{a}^{\dagger} |n\rangle =$ √ $(n+1|n+1\rangle)$ and $\hat{a}|n\rangle =$ √ $\overline{n}|n-1\rangle,$ and show that these imply $\langle n|\hat{a} \rangle$ √ $n + 1(n + 1)$ and $\langle n | \hat{a}^{\dagger} =$ √ $\overline{n}\langle n-1|.$
	- ii) Find the matrix elements $\langle m|\hat{x}|n\rangle$, $\langle m|\hat{p}|n\rangle$, $\langle m|\hat{x}^2|n\rangle$, $\langle m|\hat{p}^2|n\rangle$.
- iii) From the results of the previous part, find the uncertainty product $\Delta x \Delta p$ for a particle in the nth state, and comment on the result.
- 10. Verify that the definition

$$
H_n(x) = \exp(x^2/2) \left(x - \frac{d}{dx}\right)^n \exp(-x^2/2)
$$

does indeed generate the first few Hermite polynomials, as given in Q6 of Examples 1.

11. A state $|\lambda\rangle$ is an eigenstate of \hat{a} : $\hat{a}|\lambda\rangle = \lambda|\lambda\rangle$, for some complex λ . Find Δx and Δp . [You may use the following as a check on your results: $\langle \hat{x} \rangle = \sqrt{2x_0} \text{Re}[\lambda].$]

Find an expression for the state $|\lambda\rangle$.

[Hint: writing $|\lambda\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$, find a recurrence relation between the coefficients c_n , namely: $c_{n+1} = \lambda c_n / \sqrt{n+1}$. Don't worry about normalisation initially, but leave the first constant, c_0 , to be determined at the end.]

12. Consider the symmetric two-dimensional harmonic oscillator with potential $\frac{1}{2}m\omega^2(x^2+y^2)$. Its energy eigenstates can be written $|n_x, n_y\rangle$ with energy $\hbar\omega(n_x + n_y + 1), n_x, n_y$ being nonnegative integers.

What is the degeneracy of the state with energy $N\hbar\omega$, for positive integer N?

Show that the Hermitian operator $\hat{L} = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x$ can be written as

$$
\hat{L} = \mathrm{i}\hbar (\hat{a}_y^\dagger \hat{a}_x - \hat{a}_x^\dagger \hat{a}_y),
$$

and that it commutes with the Hamiltonian.

In the subspace of states with energy $3\hbar\omega$, $\{|2,0\rangle, |1,1\rangle, |0,2\rangle\}$, show that

$$
\hat{L} \underset{N=3}{\longrightarrow} \sqrt{2}\hbar \begin{pmatrix} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix}.
$$

Verify that the eigenvectors of this matrix are

$$
\frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2}i \\ -1 \end{pmatrix}, \qquad \frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2}i \\ -1 \end{pmatrix} \qquad \text{and} \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}
$$

and find the corresponding eigenvalues. Write down the position-space representations of these eigenstates, first in terms of Cartesian coordinates (x, y) and then in polars (r, ϕ) , where $x =$ $r \cos \phi$ and $y = r \sin \phi$. Comment on your results.

13. For the symmetric three-dimensional harmonic oscillator, give expressions for the allowed energies and their degeneracies. Use them to predict the first three magic numbers in nuclei.

14. A vector space is formed from the tensor direct product of two other complex vector spaces. The first, \mathbb{V}_q^3 , is a 3D space and the second, \mathbb{V}_q^2 , is 2D. (Here q and q are just labels for the two spaces.) In the first space, a Hermitian operator \hat{Q} has normalised eigenkets $\{|q+\rangle, |q0\rangle, |q-\rangle\}$ with eigenvalues $\{1, 0, -1\}$ respectively. Another operator \hat{R} in this space has the action

$$
\hat{R}|q+\rangle = \sqrt{\frac{1}{2}}|q0\rangle, \qquad \hat{R}|q0\rangle = \sqrt{\frac{1}{2}}(|q+\rangle + |q-\rangle), \qquad \hat{R}|q-\rangle = \sqrt{\frac{1}{2}}|q0\rangle.
$$

In the second space, a Hermitian operator \hat{A} has normalised eigenkets $\{|a+\rangle, |a-\rangle\}$ with eigenvalues $\{1, -1\}$ respectively. Another operator \hat{B} in this space has the action

$$
\hat{B}|a+\rangle = \frac{1}{2}|a-\rangle, \qquad \hat{B}|a-\rangle = \frac{1}{2}|a+\rangle.
$$

In the product space, we can use the following states as an orthonormal basis:

$$
|++\rangle = |q+\rangle \otimes |a+\rangle, \qquad |+-\rangle = |q+\rangle \otimes |a-\rangle, \qquad |0+\rangle = |q0\rangle \otimes |a+\rangle, |0-\rangle = |q0\rangle \otimes |a-\rangle, \qquad |-+\rangle = |q-\rangle \otimes |a+\rangle, \qquad |---\rangle = |q-\rangle \otimes |a-\rangle,
$$

- i) Using the bases given, write down the matrix representation of \hat{R} in \mathbb{V}_q^3 and of \hat{B} in \mathbb{V}_q^2 . [You should spot that you have already found the eigenvectors of these matrices in $Q_0(i)$ and $4(i)$ of Examples 1.]
- ii) Which of the following states of the combined system are separable?
	- a) $|+-\rangle + |-+\rangle$, b) $|++\rangle + |+-\rangle$, c) $|++\rangle - i|+-\rangle - i|-\rangle - |--\rangle$, d) $|++\rangle - |+-\rangle + |-+\rangle + |--\rangle$.
- iii) If $|v\rangle = \sqrt{\frac{1}{3}}$ $\frac{1}{3}\left|+-\right\rangle +\sqrt{\frac{2}{3}}$ $\frac{2}{3}|0+\rangle$ and $|w\rangle = \sqrt{\frac{2}{3}}$ $\frac{2}{3}\left|+-\right\rangle-\sqrt{\frac{1}{3}}$ $\frac{1}{3}|0+\rangle$, show that $\langle v|v\rangle = 1$, $\langle w|v\rangle = 0$, and $\langle w|\hat{R}\otimes\hat{B}|v\rangle = \frac{1}{\epsilon}$ 6 $\frac{1}{\sqrt{2}}$ $\overline{2}$.
- iv) In the basis above, the matrix representation of $\hat{R} \otimes \hat{B}$ has the form

$$
\hat{R} \otimes \hat{B} \longrightarrow \sqrt{\frac{1}{8}} \begin{pmatrix} x & x & x & y & x & x \\ x & x & y & x & x & x \\ x & y & x & x & x & y \\ y & x & x & x & y & x \\ x & x & x & y & x & x \\ x & x & y & x & x & x \end{pmatrix}.
$$

Find x and y. Write down an eigenket of $\hat{R} \otimes \hat{B}$ and verify that its column-vector representation is an eigenvector of the matrix above.