
PHYS30201 Mathematical Fundamentals of Quantum Mechanics Examples 2

1. A particle is in a state |ψ〉 when the observable corresponding to Ω̂ is measured. Show that the

following two statements are equivalent:

(I) the probability of getting a result ωi is |〈ωi|ψ〉|2;
(II) the expectation value (ensemble average) is 〈ψ|Ω̂|ψ〉.

[Do NOT assume that |ψ〉 is an eigenstate of Ω̂ – the equivalence is trivial in that case.]

2. At a given time, a particle is in a state |φ0〉, with

φ0(x) =

(
1

4
√
πa2

)
e−x

2/2a2 ,

and a =
√

~/mω. A measurement is made of the momentum.

What is the probability of getting an answer within a small range δp = ~/100a centred on the

value ~/a?

3. A hydrogen atom is prepared in an initial state described by the wave function

ψI(r) =
1√

96πa50
r exp

(
− r

2a0

)
,

where a0 is the Bohr radius. A measurement is made of the energy.

What is the probability of obtaining the ground state energy, −13.6 eV?

What other values of the energy might be obtained?

What would the probability be if instead the initial state were
√

3 cos(θ)ψI(r)?

[Hint: You will need the ground-state wave function of hydrogen to answer this; it is proportional

to exp(−r/a0). The first answer works out as about 0.23.]

4. In a particular orthonormal basis, the Hamiltonian of a certain system is represented by

Ĥ −→ µ~√
2

 0 1 0
1 0 1
0 1 0

 .

Construct the representation of the propagator Û(t, 0) in the same basis, and hence find the

subsequent state vectors for:

(i) |ψ(0)〉 −→ (0, 1, 0)>, (ii) |ψ(0)〉 −→ (1, 0,−1)>/
√

2.

The eigenvectors of the matrix representation of Ĥ were obtained in Q4(i) of Examples 1. Show

that your results can also be obtained by first decomposing |ψ(0)〉 in the eigenbasis of Ĥ.



5.
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The picture above represents a series of measurements of observables associated with operators

Â and B̂, each of which has only two eigenvalues, ±1. In the basis {|a+〉, |a−〉} the operators

are given by

Â −→
a

(
1 0
0 −1

)
, B̂ −→

a

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
where θ is some real parameter. At each step, give the fraction of particles for which the

measurement yields 1 or −1.

[Hint: first show that the eigenvectors of B̂ can be represented as follows:

|b+〉 −→
a

(
cos θ
sin θ

)
, |b−〉 −→

a

(
sin θ
− cos θ

)
;

see also Q3(iv) of Examples 1.]

6. Use Ehrenfest’s theorem to show that for the one-dimensional harmonic oscillator in any state

(not necessarily a stationary state),

m
d2〈x̂〉
dt2

= −ks〈x̂〉,

where ks is the spring constant. Comment on this result.

7. Consider a system with Hamiltonian Ĥ = ~γ
(

0 1
1 0

)
, and an observable Ω̂ = ~

2

(
0 −i
i 0

)
.

Check that the state

(
cos γt
−i sin γt

)
is a solution of the time-dependent Schrödinger equation,

and verify that Ehrenfest’s theorem holds for the expectation value of Ω̂.

8. A particle of mass m is bound by a potential V (r). Show that if the potential is spherically

symmetric, V = V (r), the expectation value of the angular momentum is conserved.

[You may use the commutation relations from Q8 of Examples 1.]

Now consider a non-spherically-symmetric potential V = V0(r)+zV1(r). Show that 〈L̂z〉 is still

conserved, and that

d

dt
〈L̂x〉 = −〈ŷ V̂1〉 and

d

dt
〈L̂y〉 = 〈x̂ V̂1〉

Check that the right-hand sides correspond to the expectation values of the components of the

torque, as expected.



9. This question uses the raising and lowering operators for the harmonic oscillator, â† and â.

i) Verify the numerical coefficients in the expressions â†|n〉 =
√
n+ 1|n+1〉 and â|n〉 =

√
n|n−1〉,

and show that these imply 〈n|â =
√
n+ 1〈n+ 1| and 〈n|â† =

√
n〈n− 1|.

ii) Find the matrix elements 〈m|x̂|n〉, 〈m|p̂|n〉, 〈m|x̂2|n〉, 〈m|p̂2|n〉.

iii) From the results of the previous part, find the uncertainty product ∆x∆p for a particle in

the nth state, and comment on the result.

10. Verify that the definition

Hn(x) = exp(x2/2)
(
x− d

dx

)n
exp(−x2/2)

does indeed generate the first few Hermite polynomials, as given in Q6 of Examples 1.

11. A state |λ〉 is an eigenstate of â: â|λ〉 = λ|λ〉, for some complex λ. Find ∆x and ∆p.

[You may use the following as a check on your results: 〈x̂〉 =
√

2x0Re[λ].]

Find an expression for the state |λ〉.
[Hint: writing |λ〉 =

∑∞
n=0 cn|n〉, find a recurrence relation between the coefficients cn, namely:

cn+1 = λcn/
√
n+ 1. Don’t worry about normalisation initially, but leave the first constant, c0,

to be determined at the end.]

12. Consider the symmetric two-dimensional harmonic oscillator with potential 1
2
mω2(x2 + y2).

Its energy eigenstates can be written |nx, ny〉 with energy ~ω(nx + ny + 1), nx, ny being non-

negative integers.

What is the degeneracy of the state with energy N~ω, for positive integer N?

Show that the Hermitian operator L̂ = x̂p̂y − ŷp̂x can be written as

L̂ = i~(â†
yâx − â†

xây),

and that it commutes with the Hamiltonian.

In the subspace of states with energy 3~ω, {|2, 0〉, |1, 1〉, |0, 2〉}, show that

L̂ −→
N=3

√
2~

 0 −i 0
i 0 −i
0 i 0

 .

Verify that the eigenvectors of this matrix are

1
2

 1√
2 i
−1

 , 1
2

 1

−
√

2 i
−1

 and 1√
2

 1
0
1


and find the corresponding eigenvalues. Write down the position-space representations of these

eigenstates, first in terms of Cartesian coordinates (x, y) and then in polars (r, φ), where x =

r cosφ and y = r sinφ. Comment on your results.

13. For the symmetric three-dimensional harmonic oscillator, give expressions for the allowed en-

ergies and their degeneracies. Use them to predict the first three magic numbers in nuclei.



14. A vector space is formed from the tensor direct product of two other complex vector spaces.

The first, V3
q, is a 3D space and the second, V2

a, is 2D. (Here q and a are just labels for the two

spaces.) In the first space, a Hermitian operator Q̂ has normalised eigenkets {|q+〉, |q0〉, |q−〉}
with eigenvalues {1, 0,−1} respectively. Another operator R̂ in this space has the action

R̂|q+〉 =
√

1
2
|q0〉, R̂|q0〉 =

√
1
2

(
|q+〉+ |q−〉

)
, R̂|q−〉 =

√
1
2
|q0〉.

In the second space, a Hermitian operator Â has normalised eigenkets {|a+〉, |a−〉} with eigen-

values {1,−1} respectively. Another operator B̂ in this space has the action

B̂|a+〉 = 1
2
|a−〉, B̂|a−〉 = 1

2
|a+〉.

In the product space, we can use the following states as an orthonormal basis:

|++〉 = |q+〉 ⊗ |a+〉, |+−〉 = |q+〉 ⊗ |a−〉, |0+〉 = |q0〉 ⊗ |a+〉,

|0−〉 = |q0〉 ⊗ |a−〉, |−+〉 = |q−〉 ⊗ |a+〉, |−−〉 = |q−〉 ⊗ |a−〉,

i) Using the bases given, write down the matrix representation of R̂ in V3
q and of B̂ in V2

a.

[You should spot that you have already found the eigenvectors of these matrices in Q3(ii) and

4(i) of Examples 1.]

ii) Which of the following states of the combined system are separable?

a) |+−〉+ |−+〉, b) |++〉+ |+−〉,

c) |++〉 − i|+−〉 − i|−+〉 − |−−〉, d) |++〉 − |+−〉+ |−+〉+ |−−〉.

iii) If |v〉 =
√

1
3
|+−〉+

√
2
3
|0+〉 and |w〉 =

√
2
3
|+−〉−

√
1
3
|0+〉, show that 〈v|v〉 = 1, 〈w|v〉 = 0,

and

〈w|R̂⊗ B̂|v〉 =
1

6
√

2
.

iv) In the basis above, the matrix representation of R̂⊗ B̂ has the form

R̂⊗ B̂ −→
√

1
8


x x x y x x
x x y x x x
x y x x x y
y x x x y x
x x x y x x
x x y x x x

 .

Find x and y. Write down an eigenket of R̂⊗B̂ and verify that its column-vector representation

is an eigenvector of the matrix above.


