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1. For this case, the perturbation is Ĥ (1) −→ −λ sin(πx/a) for 0 < x < a and 0 elsewhere. The

ground state wavefunction of the unperturbed square well is ψ0(x) =
√

2/a sin(πx/a), so the

first order energy shift is

E(1)

0 = 〈ψ0|Ĥ (1)|ψ0〉 = −2λ

a

∫ a

0

sin3(πx/a)dx = −8λ

3π
.

(The integral can be done by writing sin3y = sin y (1 − cos2y).) The answer is negative as

expected since the potential energy is everywhere lower in the perturbed well than in the

unperturbed one. In Q4 though, we will see that it is still an over-estimate.

2. In these problems Ĥ (0) = Ĥ(λ = 0) has only diagonal elements, E(0)

1 and E(0)

2 (with E(0)

1 = 0

in (ii)). Since Ĥ (0) is already diagonal, the (non-degenerate) eigenvectors are |1(0)〉 = (1
0
) and

|2(0)〉 = (0
1
). Then Ĥ (1) = Ĥ − Ĥ (0) consists of all the λ-dependent terms. The required matrix

elements can be read off directly from the matrix form of Ĥ (1), since it is already given in the

basis {|1(0)〉, |2(0)〉}:

Ĥ (1) −→
(
〈1(0)|Ĥ (1)|1(0)〉 〈1(0)|Ĥ (1)|2(0)〉
〈2(0)|Ĥ (1)|1(0)〉 〈2(0)|Ĥ (1)|2(0)〉

)
.

The energy shifts to second order are as follows:

E1 = E(0)

1 + 〈1(0)|Ĥ (1)|1(0)〉−

∣∣∣〈2(0)|Ĥ (1)|1(0)〉
∣∣∣2

∆
, E2 = E(0)

2 + 〈2(0)|Ĥ (1)|2(0)〉+

∣∣∣〈2(0)|Ĥ (1)|1(0)〉
∣∣∣2

∆
,

where ∆ = E(0)

2 − E
(0)

1 .

i) In this case, the first-order shifts vanish since Ĥ (1) has no diagonal elements:

Ĥ (1) −→
(

0 λ
λ∗ 0

)
; E1 = E(0)

1 + 0− |λ|
2

∆
+ . . . , E2 = E(0)

2 + 0 +
|λ|2

∆
+ . . . .

For comparison the exact eigenvalues are

1
2

(
E(0)

2 + E(0)

1 ∓
√

∆2 + 4|λ|2
)

= 1
2
(E(0)

2 + E(0)

1 )∓ 1
2
∆
(

1 + 1
2

4|λ|2
∆2 + . . .

)
.

which agrees with the result of perturbation theory.

The first-order shifts in the states are

|1(1)〉 = −λ
∗

∆
|2(0)〉 ⇒ |1〉 −→

(
1

−λ∗

∆

)
, |2(1)〉 =

λ

∆
|1(0)〉 ⇒ |2〉 −→

(
λ
∆

1

)
,

while the (unnormalised) exact results are

|1〉 −→

(
1
−2λ∗

∆+
√

4|λ|2+∆2

)
, |2〉 −→

(
2λ

∆+
√

4|λ|2+∆2

1

)
.

which match our perturbative results if we drop terms of order |λ|2. The error in the

normalisation of each state is clearly of order λ2.



ii) In this case, E(0)

1 = 0 and so ∆ = E(0)

2 ; the perturbative results are

Ĥ (1) −→
(

2λ λ
λ 0

)
; E1 = 2λ− λ2

∆
+ . . . , E2 = ∆ + 0 +

λ2

∆
+ . . . ,

while the exact eigenvalues are

1
2

(
∆ + 2λ∓

√
∆2 − 4λ∆ + 8λ2

)
= 1

2
∆ + λ∓ 1

2
∆
(

1 + 1
2

(
−4 λ

∆
+ 8

(
λ
∆

)2
)
− 1

8

(
−4 λ

∆

)2
+ . . .

)
= 1

2
∆ + λ∓

(
1
2
∆− λ+ λ2

∆
. . .
)
.

which again agrees with perturbation theory.

3. Here we need to find the eigenvectors of Ĥ (0) each time before we can apply perturbation

theory. In the first case it is trivial (as in the question above) but in the second case it has

to be done explicitly. As a result the matrix elements of the perturbation also have to be

calculated explicitly in this case and not just “read off”.

For a � b, the eigenstates of Ĥ (0) = Ĥ0 + Ĥa are |1(0)〉 = (1
0
) and |2(0)〉 = (0

1
), with energies

E0 ∓ a. These are not degenerate, so we can use ordinary perturbation theory to find that the

first-order energy shifts due to Ĥb are both just b, and the second-order shifts are

E(2)

1 = −E(2)

2 =
|〈2(0)|Ĥb|1(0)〉|2

(E0 − a)− (E0 + a)
= − b

2

2a
⇒

{
E1 = E0 − a+ b− b2

2a
+ . . .

E2 = E0 + a+ b+ b2

2a
+ . . . .

For a� b, the eigenstates of Ĥ (0) = Ĥ0 + Ĥb are

|1(0)〉 =
1√
2

(
1

1

)
and |2(0)〉 =

1√
2

(
1

−1

)
,

with energies E0 and E0 + 2b. Again these are not degenerate and we can use ordinary per-

turbation theory. Explicit calculation gives 〈1(0)|Ĥa|1(0)〉 = 0 = 〈2(0)|Ĥa|2(0)〉, so this time the

first-order energy shifts vanish. The second-order shifts are

E(2)

1 = −E(2)

2 =
|〈2(0)|Ĥa|1(0)〉|2

E0 − (E0 + 2b)
= −a

2

2b
⇒

{
E1 = E0 − a2

2b
+ . . .

E2 = E0 + 2b+ a2

2b
+ . . . .

The eigenvalues of the full Ĥ0 + Ĥa + Ĥb are E0 + b ∓
√
a2 + b2 which when expanded in

powers of a/b or b/a give to second order the values found in the two calculations above. The

(unnormalised) eigenvectors are (a +
√
a2 + b2, b) and (−b, a +

√
a2 + b2) which could also be

used to check the first order shifts in the states. The energy eigenvalues are shown below as

functions of b.

a>b a=b a<b

E0



The problem with the perturbative calculations if a and b are around the same size, is that |E(0)|,
|E(1)| and |E(2)| are all of the same order, and an expansion in a/b or b/a will not converge. In

general, even if the unperturbed states are not actually degenerate, if they are close in energy

they give rise to small energy denominators which spoil the convergence.

4. Here I switch back to the “traditional” labelling of the states of the infinite square well, E(0)
m =

m2E(0)

1 , |m(0)〉 −→
x

√
2
a

sin mπ
a

, with m = 1, 2, 3, . . . . Defining the dimensionless small parameter

β ≡ λ/E(0)

1 for the perturbation of Q1, the first-order shift in the ground state is

|1(1)〉 =
∑
m>1

〈m(0)|Ĥ (1)|1(0)〉
E(0)

1 − E
(0)
m

|m(0)〉

−→
x

∑
m>1

1

E(0)

1 (1−m2)

(
−λ 2

a

∫ a

0

sin
mπx′

a
sin2πx

′

a
dx′
)√

2

a
sin

mπx

a

= −
∑

m=3,5...

8β

m(m2 − 4)(m2 − 1)π

√
2

a
sin

mπx

a
.

Only odd terms appear since, by symmetry about the point x = a/2, the integral vanishes for

even m. The denominator here grows very rapidly with m, and so the wave function shift will

be dominated by the first term, − β
15π

√
2
a

sin 3πx
a

. Noting that the prefactor is negative, this

will tend to cancel the zeroth order wave function at the sides of the box and reinforce it in the

middle, thereby increasing the probability of finding the particle in the region where the well is

deepest. The picture below is not to scale; the effect on the wave function (blue, solid, where

red dashed is unperturbed) is magnified for visibility.

The second-order energy shift calculated with only this term in |1(1)〉 is

E(2)

1 =
∑
m>1

|〈m(0)|Ĥ (1)|1(0)〉|2

E(0)

1 − E
(0)
m

= −
∑

m=3,5...

E(0)

1

m2 − 1

(
8β

m(m2 − 4)π

)2

≈ −8E(0)

1 β2

225π2
.

The full sum can actually be done, giving

E(2)

1 = −(448− 45π2)E(0)

1 β2

108π2
.

The ratio of the full and one-term results is 1.007, so the assumption of dominance of the sin 3πx
a

correction is very good.



5. The 1D harmonic oscillator has non-degenerate energy levels and so we do not need to worry

about degeneracy. On Examples 1 we found that

〈m(0)|x̂|n(0)〉 = (x0/
√

2)〈m(0)|â† + â|n(0)〉 = (x0/
√

2)(
√
mδ(n+1),m +

√
nδ(n−1),m).

Hence the diagonal matrix elements are zero and there is no first-order shift in the energy. As

the off-diagonal matrix elements vanish unless unless m = n± 1, in which case

E(0)
n − E(0)

m = ∓~ω, the sum over all states in the first-order shift in the eigenstates reduces to

two terms (and similarly for the second-order shift in the energy):

|n(1)〉 =
∑

m=n±1

〈m(0)|Ĥ (1)|n(0)〉
E(0)
n − E(0)

m

|m(0)〉 =
x0λ√
2~ω

(
−
√
n+ 1|(n+ 1)(0)〉+

√
n|(n− 1)(0)〉

)
,

E(2)

n =
∑

m=n±1

∣∣∣〈m(0)|Ĥ (1)|n(0)〉
∣∣∣2

E(0)
n − E(0)

m

= −λ
2x2

0

2~ω
= − λ2

2mω2
.

For n = 0 there is no state |(n− 1)(0)〉, but that doesn’t matter as the coefficient is zero; so E(2)

0

is as above and

|0(1)〉 = − x0λ√
2~ω
|1(0)〉.

Exact results may be obtained by “completing the square” to write the potential as

V (x) = 1
2
mω2x2 + λx = 1

2
mω2(x − δ)2 − ε, where δ = −λ/(mω2) and ε = λ2/(2mω2). So

all energies are simply lowered by ε, and the wave functions are obtained from the unperturbed

ones by replacing x→ x− δ. For the ground state,

φ0(x−δ) = (πx2
0)−1/4e−(x−δ)2/2x20 =

1

(πx2
0)1/4

(
1 + δ

x

x2
0

+ . . .

)
e−x

2/2x20 = φ0(x)+
δ√
2x0

φ1(x)+. . . .

Comparing the perturbative and exact results we see that E(2)
n is in fact −ε, the exact energy

shift. The first-order state shift also agrees. Obviously there are higher-order state shifts which

we have not calculated, but as the exact energy shift is proportional to λ2 and to no other

power of λ, all higher-order energy shifts must vanish.

For the perturbation λx̂3, we need

〈m(0)|x̂3|n(0)〉 =
x3

0

2
√

2

(√
m(m− 1)(m− 2)δm,(n+3) + 3m

√
mδm,(n+1)

+ 3n
√
nδm,(n−1) +

√
n(n− 1)(n− 2)δm,(n−3)

)
.

The shift in the states is

|n(1)〉 =
x3

0λ

2
√

2~ω

(
−1

3

√
(n+ 3)(n+ 2)(n+ 1) |(n+ 3)(0)〉 − 3(n+ 1)

√
n+ 1 |(n+ 1)(0)〉

+ 3n
√
n |(n− 1)(0)〉+ 1

3

√
n(n− 1)(n− 2) |(n− 3)(0)〉

)
,

and so |0(1)〉 =
x3

0λ

2
√

2~ω

(
−1

3

√
6 |(3)(0)〉 − 3 |(1)(0)〉

)
.

Also E(2)

n = −(11 + 30n+ 30n2)~2λ2

8m3ω4
and so E(2)

0 = −11~2λ2

8m3ω4
.



However small λ is, there will be some value of x for which λx3 ≥ 1
2
mω2x2. Hence for highly

excited states which probe these values of x, λx3 cannot be treated as small, and so the per-

turbation series must break down. In fact the potential goes to −∞ as x→ −∞, which means

that highly excited states are not even bound, and the lowest-lying states have a possibility

of decaying through tunnelling. If that probability is small enough, though, the perturbative

calculation can still be very reliable for low-lying states.

6. In this problem the matrices are again written in the eigenbasis of Ĥ (0):

|1(0)〉 =

 1
0
0

, |2(0)〉 =

 0
1
0

, |3(0)〉 =

 0
0
1

,
and so matrix elements between these states can be “read-off” straightforwardly.

i) Non-degenerate: There are no first-order energy shifts since Ĥ (1) has no diagonal elements.

However all off-diagonal elements are non-zero, and so each state has a first-order shift

involving both of the others; to first order in a and b (defining ∆ij = E(0)

i − E
(0)

j ) we get

|1〉 =

 1
0
0

 +
b

∆12

 0
1
0

 +
a

∆13

 0
0
1

, |2〉 =

 0
1
0

− b

∆12

 1
0
0

 +
a

∆23

 0
0
1

,
|3〉 =

 0
0
1

− a

∆13

 1
0
0

− a

∆23

 0
1
0

.

ii) Degenerate (E(0)

1 = E(0)

2 ): Because Ĥ (1) has a non-vanishing matrix element between the

degenerate states in the current basis, we need to choose a new basis. In this 2D space, we

need to use as our new zeroth-order states the eigenvectors of the matrix(
E(0)

1 b
b E(0)

1

)
.

These are |1′(0)〉 =
√

1
2

(
|1(0)〉 − |2(0)〉

)
and |2′(0)〉 =

√
1
2

(
|1(0)〉+ |2(0)〉

)
. (The non-degenerate

third state is unaffected: |3′(0)〉 = |3(0)〉).

The first-order energy shifts are E(1)

n′ = 〈n′(0)|Ĥ (1)|n′(0)〉, namely ∓b for the first two states

and 0 for the third. In the new basis, Ĥ (1) mixes only the new second state with the third

(that is, only 〈2′(0)|Ĥ (1)|3(0)〉 and its complex conjugate are non-zero); we get

|1′〉 =
1√
2

 1
−1

0

, |2′〉 =
1√
2

 1
1
0

−
√

2a

∆

 0
0
1

, |3〉 =

 0
0
1

 +
a

∆

 1
1
0

,
where the energy denominator is, strictly, E(0)

3 − E
(0)

1 . However at this order we can replace

it by ∆ = E(0)

3 − (E(0)

1 + b) which happens to give a closer match to the exact result discussed

below. We can easily see that |1′(0)〉 is an exact eigenvector of the full Hamiltonian with

eigenvalue E(0)

1 − b.



The other two eigenvalues are (E(0)

1 + b + E(0)

3 ±
√

∆2 + 8a2)/2. (Hence we can see imme-

diately that a contributes to the energies only at second order.) The exact (unnormalised)

eigenvectors are

|2′〉 =
∆ +

√
∆2 + 8a2

2
√

2∆

 1
1
0

−
√

2a

∆

 0
0
1

, |3〉 =
∆ +

√
∆2 + 8a2

2∆

 0
0
1

 +
a

∆

 1
1
0

.
(The overall normalisation is the same in both cases and has been chosen to make clear the

relation with the first-order results; it differs from 1 only by terms of order a2.)

7. The perturbation can be written Ĥ (1) = λx̂ŷ = 1
2
λx2

0(âx + â†x)(ây + â†y). For the ground-state

Ĥ (1)|0, 0〉 = 1
2
λx2

0|1, 1〉 and so its first-order energy shift is zero.

There are two states with E = 2~ω, |1, 0〉 and |0, 1〉, and for them

Ĥ (1)|1, 0〉 =
λx2

0

2

(√
2|2, 1〉+ |0, 1〉

)
, Ĥ (1)|0, 1〉 =

λx2
0

2

(√
2|1, 2〉+ |1, 0〉

)
.

The degenerate states |1, 0〉 and |0, 1〉 are therefore mixed by the perturbation Ĥ (1), and to find

the correct basis we need to diagonalise Ĥ (1). The matrix representing Ĥ (1) in this 2D subspace

is (
〈1, 0|Ĥ (1)|1, 0〉 〈1, 0|Ĥ (1)|0, 1〉
〈0, 1|Ĥ (1)|1, 0〉 〈0, 1|Ĥ (1)|0, 1〉

)
=

~λ
2mω

(
0 1
1 0

)
.

Its eigenvectors are 1√
2
(1

1
) and 1√

2
( 1
−1

), so the eigenstates in this subspace are

|A〉 =
√

1
2
(|1, 0〉+ |0, 1〉) and |A〉 =

√
1
2
(|1, 0〉 − |0, 1〉), with eigenvalues ±~λ/(2mω). Thus to

first order in λ the energies are ~ω(2± λ/(2mω2)).

The second-order shift in energy of the ground state is

E(2)

0,0 =
∑
m,n 6=0

|〈m,n|Ĥ (1)|0, 0〉|2

(−m− n)~ω
=
|〈1, 1|Ĥ (1)|00〉|2

−2~ω
= −1

2

(
λ

2mω2

)2

~ω.

The second-order shift in energy of state |A〉 is

E(2)

A =
∑
m,n

|〈m,n|Ĥ (1)|A〉|2

(1−m− n)~ω
where {m,n} 6= {1, 0}, {0, 1}

=
|〈2, 1|Ĥ (1)|A〉|2

−2~ω
+
|〈1, 2|Ĥ (1)|A〉|2

−2~ω
= −

(
λ

2mω2

)2

~ω,

and that of state |B〉 is the same.

In this problem, the perturbation, no matter how small, breaks the rotational symmetry in the

x−y plane. The term δV = λxy is highest along the line x = y and lowest along x = −y. The

linear combinations
√

1
2
(|1, 0〉±|0, 1〉) have probability densities proportional to (x±y)2e−r

2/x20 ,

and so clearly the first is concentrated in the region where the potential is highest while the

second is concentrated where the potential is lowest. Hence these are obviously the best starting

points to construct the eigenstates of the perturbed Hamiltonian. Contour plots of the potential

(left) and probability densities for the two eigenstates (right) are shown below. (In terms of

angles, the probability densities are proportional to cos2(φ− π
4
) and sin2(φ− π

4
).)



In fact, working with rotated coordinates x′ =
√

1
2
(x+ y) and y′ =

√
1
2
(x− y), the

perturbation is 1
2
λ
(

(x′)2 − (y′)2
)

and the full perturbed potential can be written
1
2
mω2

+(x′)2 + 1
2
mω2

−(y′)2, with ω2
± = ω2(1±λ/mω2), which is elliptical. Hence the exact energies

are (nx′ +
1
2
)~ω+ + (ny′ +

1
2
)~ω−, and the perturbative results can be obtained from expanding

this in powers of λ, as in section 4.1.3:

E = (nx′ + ny′ + 1)~ω +
λ

2mω2
(nx′ − ny′)~ω − 1

2

(
λ

2mω2

)2

(nx′ + ny′ + 1)~ω . . .

8. 3Li++ is a hydrogenic atom with a single electron and a nuclear charge Z = 3. In hydrogen,

the electromagnetic parameter α enters only as the coefficient of the Coulomb interaction,

VC = ~cα/r; in lithium this is replaced by VC = ~cZα/r, so all calculations follow through as

in the hydrogen case but with α→ Zα. The unperturbed energy levels are −1
2
(Zα)2mec

2/n2 =

−Z2ERy/n
2 and the Bohr radius ~/(mcZα) = a0/Z; the fine structure energy shift is

E(1)

nj =
Z4α2ERy

n3

(
3

4n
− 2

2j + 1

)
; E(1)

4,3/2 = −ERyα
2 81× 5

1024
= −287µeV.

Positronium has a Hamiltonian that differs from hydrogen only in the replacement of the

electron mass me (strictly, the reduced mass of the electron-proton system) by the reduced mas

of positronium, me/2. In the final result for the fine structure of hydrogen, the mass only enters

through ERy, which will be halved in positronium, giving −1
2
ERyα

2 5
1024

= −1.77µeV.

9. Expanding the relativistic energy to order p4, we get the leading correction to the non-relativistic

Hamiltonian:

Ĥ (1) = − p̂4

8m3c2
,

Using p̂2 = − ~2

2x2
0

(
â†â† + ââ− (2â†â+ 1)

)
we get

〈n(0)|p4|n(0)〉 =
~4

4x4
0

〈n(0)|
(
â†â†ââ+ âââ†â† + (2â†â+ 1)2

)
|n(0)〉

= 1
4
(~ωm)2

(
n(n− 1) + (n+ 1)(n+ 2) + (2n+ 1)2

)
= 3

4
(~ωm)2(2n(n+ 1) + 1),

where we have dropped all terms which give zero because the numbers of creation and an-

nihilation operators don’t match. Thus E(1)
n = −3(~ω)2

32mc2
(2n(n + 1) + 1). [Using the trick,

p2 = 2m
(
Ĥ (0) − V (x)

)
, doesn’t simplify things here; for eigenstates of the HO 〈V 〉 = 1

2
〈Ĥ (0)〉,

giving 〈p4〉 = 〈V 2〉 which just leads to the same set of terms as considered above.]



10. The two electrons have orbital angular momenta l = 0 and 1, and hence a total of L = 1.

The spins of the electrons can add to give a total of S = 0 or S = 1. However the spin-orbit

interaction would have no effect on states with S = 0 and so these levels presumably have

S = 1. (Experiments with laser excitations typically do not see S = 1 and S = 0 states at

the same time, as spin-flip interactions are suppressed.) Adding L = 1 and S = 1 can give

J = 0, 1, 2. This agrees with the observed pattern of three levels. The spin-orbit energies of

the levels are

EJ = 1
2
E
(
J(J + 1)− L(L+ 1)− S(S + 1)

)
,

and so the two splittings are E1 − E0 = E, E2 − E1 = 2E and their ratio is 2. Comparing this

prediction with the observed value,

E2 − E1

E1 − E0

=
0.01313

0.00647
= 2.03,

we see that it agrees to better than 2%.

11. With j = l± 1
2

and the decompositions given in the question, and writing |j,mj〉 as a shorthand

for |l, 1
2
; j,mj〉,

〈j,mj|Ŝz|jmj〉 =
l + 1

2
±mj

2l + 1
1
2
~ +

l + 1
2
∓mj

2l + 1
(−1

2
~) = ± ~mj

2l + 1

Also using L̂ = Ĵ− Ŝ to reexpress the scalar product, we get

〈j,mj|Ŝ · Ĵ|j,mj〉
〈j,mj|Ĵ2|j,mj〉

=
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
,

and for j = l ± 1
2

this simplifies to ±1/(2l + 1). Hence the equality is shown.

12. Defiing the total spin as Ŝ = Ŝ(p) + Ŝ(n), we can write

Ĥ (0) = −AŜ(p) · Ŝ(n) = −1
2
A
(
Ŝ2 − (Ŝ(p))2 − (Ŝ(n))2

)
= −1

2
A
(
Ŝ2 − 3

2
~2
)
.

The eigenstates of this Hamiltonian are {|S,M〉}, the eigenstates of Ŝ2 and Ŝz, with quantum

numbers S and M , where S = 1 or 0: {|1, 1〉, |1, 0〉, |1,−1〉} with energy −A~2/4 and |0, 0〉
with energy 3A~2/4.

When we introduce a magnetic field, we have to consider whether the three-fold degeneracy of

the spin-1 states will be a problem. It is not, because the operator
(
gpŜ

(p)
z + gnŜ

(n)
z

)
has no

off-diagonal elements between these three states. We can check this explicitly, or note that for

a non-zero result, Ĥ (1) would need to flip individual spins, which the S
(i)
z do not. (We could

even invoke the Wigner-Eckart theorem which says that the m = 0 element of a vector operator

can connect only states with the same M .)



The first-order energy shifts can therefore be calculated directly:

E(1)

1,1 =
µNB

~
〈1, 1|

(
gpŜ

(p)
z + gnŜ

(n)
z

)
|1, 1〉

=
µNB

~

(
〈+| ⊗ 〈+|

)(
gpŜ

(p)
z + gnŜ

(n)
z

)(
|+〉 ⊗ |+〉

)
= 1

2
µNB(gp + gn),

E(1)

1,0 =
µNB

2~

(
〈+| ⊗ 〈−|+ 〈−| ⊗ 〈+|

)(
gpŜ

(p)
z + gnŜ

(n)
z

)(
|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉

)
= 0,

E(1)

1,−1 =
µNB

~

(
〈−| ⊗ 〈−|

)(
gpŜ

(p)
z + gnŜ

(n)
z

)(
|−〉 ⊗ |−〉

)
= −1

2
µNB(gp + gn),

E(1)

0,0 =
µNB

2~

(
〈+| ⊗ 〈−| − 〈−| ⊗ 〈+|

)(
gpŜ

(p)
z + gnŜ

(n)
z

)(
|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉

)
= 0.

13. For the nucleons gs 6= 2, but the proof goes through as in lectures, except that we first write

µ̂ = −(µB/~)(glL̂ + gsŜ) = glĴ + (gs − gl)Ŝ,

where gl = 1 for a proton and 0 for a neutron. Then the Landé g-factor is

g =

(
gl + (gs − gl)

j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)

)

=
(gs + gl)j(j + 1) + (gs − gl)

(
s(s+ 1)− l(l + 1)

)
2j(j + 1)

.

To add the noments of two nucleons, we express both 〈Ĵ (1)
z 〉 and 〈Ĵ (2)

z 〉 in terms of 〈Ĵz〉:

〈Ĵ (1)

z 〉 = 〈Ĵz〉
〈Ĵ · Ĵ(1)〉
〈Ĵ2〉

= ~M
〈Ĵ2 + (Ĵ(1))2 − (Ĵ(2))2〉

2〈Ĵ2〉
= ~M

J(J + 1) + j1(j1 + 1)− j2(j2 + 1)

2J(J + 1)
,

and similarly for 〈Ĵ (2)
z 〉. Combining these, we get

〈g1Ĵ
(1)

z + g2Ĵ
(2)

z 〉 = ~M
(g1 + g2)J(J + 1) + (g1 − g2)

(
j1(j1 + 1)− j2(j2 + 1)

)
2J(J + 1)

≡ ~Mg.

Note that this is symmetric if we swap both j1 ↔ j2 and g1 ↔ g2, as it must be!

14. The energy shift for a general state in the weak field limit is glsjµBBmj. Thus 1s1/2 and 2s1/2

states are shifted by ±µBB, the 2p1/2 states by ±µBB/3 and the 2p3/2 states by ±2µBB/3 or

±2µBB (depending on mj). We take E1/2 and E3/2 to be the 2p → 1s transition energies,

including fine-structure splitting but in the absence of the external magnetic field. In the field,

the transition energies are, in the order shown in the diagram on the left below:

E3/2 + µBB, E3/2 − µBB/3, E3/2 + 5µBB/3, E3/2 − 5µBB/3, E3/2 + µBB/3,

E3/2 − µBB, E1/2 − 2µBB/3, E1/2 + 4µBB/3, E1/2 − 4µBB/3, E1/2 + 2µBB/3



P3/2
2

P1/2
2

S1/2
2

S1/2
2

n=1
1

1−

mj

1/2−

n=2

−

−
−

2

−

2/3

2

2/3

1
1/3

∆Ε/(µ

1
1/3

ΒB)

1/2

1/2

3/2

−

−

1/2
1/2
1/2
1/2
−
−

3/2

1/2

1−

n=1 l=0
1

n=2
l=0,1 (1,−1/2)

(ml,ms)

2

1

−

−

2

1

0

ΒB)∆Ε/(µ

(1,1/2)

(−1,1/2)

(−1,−1/2)

(0,1/2)

(0,−1/2)

(0,1/2)

(0,−1/2)

Note that there are no transitions from the 2s1/2 states, since they cannot decay via electric

dipole transitions.

In the strong-field limit, the fine structure splitting is much smaller than the effect of the external

magnetic field, and we can treat states with different values of j, for the same l, as degenerate.

The states with different j are mixed by the external field and so the basis {|l, 1
2
; j,mj〉} is not

appropriate. Instead we need to work with eigenstates of L̂z and Ŝz: {|l,ml〉 ⊗ |12 ,ms〉}.

For these states, the first-order energy shift is µBB(ml + 2ms). This again gives ±µBB for the

l = 0 states with ms = ±1
2
. For the l = 1 states it is 2µBB for (ml,ms) = (1, 1

2
), µBB for

(ml,ms) = (0, 1
2
), 0 for (ml,ms) = (1,−1

2
) and (−1, 1

2
), and so on. Purely for completeness, in

the diagram on the right above the allowed transitions have been shown. The selection rules

are ∆l = 1, ∆ml = −1, 0, 1, and ∆ms = 0. The n = 2 states with (ml,ms) = (0,±1
2
) can have

l = 0 or 1; those with l = 0 are shown in brown, and they cannot decay via an electric dipole

transition.

15. We need 3|e|Ea0 = 1 meV, so |e|E = 0.630 meV Å−1 and E = 6.3× 106 V m−1. Note that this

field (around the breakdown strength of air) is very achievable in the lab, and it gives an energy

shift much larger than the neglected fine-structure shifts.

The second-order shift of the ground state can be written E(2) = (3eEa0)2a0/(4~cα). Using

~c/a0 = 1973/0.529 eV, we get E(2) = −9.18× 10−9 eV.



16. We start with the four degenerate states with j = 1
2

(2s1/2 and 2p1/2). Using the notation

|l, 1
2
; j,mj〉 and |l,ml〉 ⊗ |12 ,ms〉 we have:

|0, 1
2
; 1

2
,±1

2
〉 = |0, 0〉 ⊗ |1

2
,±1

2
〉

|1, 1
2
; 1

2
, 1

2
〉 =

√
2
3
|1, 1〉 ⊗ |1

2
,−1

2
〉 −

√
1
3
|1, 0〉 ⊗ |1

2
, 1

2
〉

|1, 1
2
; 1

2
,−1

2
〉 =

√
1
3
|10〉 ⊗ |1

2
,−1

2
〉 −

√
2
3
|1,−1〉 ⊗ |1

2
, 1

2
〉

For an external electric field E = Eez, the Hamiltonian is Ĥ (1) = |e|Eẑ. Within this set of

states, we see that z mixes only states with the same mj and different l. Also, as Ĥ (1) is

spin-independent, the matrix elements for the states |l, 1
2
; j,mj〉 reduce to those for the states

|l,ml〉:

〈1, 1
2
; 1

2
, 1

2
|z|0, 1

2
; 1

2
, 1

2
〉 = −

√
1
3
〈1, 0|z|0, 0〉 〈1, 1

2
; 1

2
,−1

2
|z|0, 1

2
; 1

2
,−1

2
〉 =

√
1
3
〈1, 0|z|0, 0〉

and the other matrix elements (other than the complex conjugates) vanish. The states with

different mj (±1
2
) therefore decouple and we can consider them separately. For each pair with

the same mj the algebra is the same as in lectures except for the overall factor of ∓
√

1
3
:

Ĥ (1) = ±
√

3a0|e|E
(

0 1
1 0

)
,

with eigenvalues ∓
√

3a0|e|E in both cases. Thus the four degenerate states with j = 1
2

are split

into two degenerate doublets, with a spacing 2
√

3a0|e|E.

(There are also four degenerate states with j = 3
2

but these all have l = 1, and hence there is

no mixing and no first-order Stark effect for them.)

17. We can assume that our system is in a large box, so that even the unbound states are discrete,

and then we don’t need to distinguish between bound and unbound states. Denoting all states

by |m(0)〉, where the unperturbed ground state is |0(0)〉, we have

E(2)

0 =
∑
m6=0

〈0(0)|Ĥ (1)|m(0)〉〈m(0)|Ĥ (1)|0(0)〉
E(0)

0 − E
(0)
m

=
∑
m6=0

〈0(0)|Ĥ (1)|m(0)〉〈m(0)|[Ω̂, Ĥ (0)]|0(0)〉
E(0)

0 − E
(0)
m

=
∑
m6=0

〈0(0)|Ĥ (1)|m(0)〉〈m(0)|(Ω̂E(0)

0 − E(0)
m Ω̂)|0(0)〉

E(0)

0 − E
(0)
m

=
∑
m6=0

〈0(0)|Ĥ (1)|m(0)〉〈m(0)|Ω̂|0(0)〉 = 〈0(0)|Ĥ (1)

(
Î − |0(0)〉〈0(0)|

)
Ω̂|0(0)〉

= 〈0(0)|Ĥ (1)Ω̂|0(0)〉 − E(1)

0 〈0(0)|Ω̂|0(0)〉.

In the penultimate line we have used completeness:
∑

m |m(0)〉〈m(0)| = 1. For the Stark effect,

E(1)

0 = 0 so the second term in the last line vanishes.



To show that Ω̂ −→ (ma0qeE/~2)(1
2
r2 + a0r) cos θ works, we need to calculate [Ω̂, Ĥ (0)]|0(0)〉.

Clearly V (r) commutes with Ω̂, so we can drop that. In the following we use ∇2 = ∇2
r −

L̂2/(~2r2), define ω(r) = (1
2
r2 + a0r), and drop the subscripts on ψ100:[

Ω̂,− ~2

2m
∇2

]
ψ = 1

2
a0qeE[∇2

r − 1
~2r2 L̂

2, ω(r) cos θ]ψ

= 1
2
a0qeE

(
cos θ[∇2

r, ω(r)]− ω(r)

~2r2
[L̂2, cos θ]

)
ψ

= 1
2
a0qeE cos θ

(
∇2
r(ωψ)− ω∇2

rψ − 2
r2
ωψ
)

= 1
2
a0qeE cos θ

(
(ω′′ + 2

r
ω′ − 2

r2
ω)ψ + 2ω′ψ′

)
= −qeEr cos θψ = Ĥ (1)ψ

In the third line, we used the fact that ψ100 is spherically symmetric and cos θ ∝ Y 0
1 (θ, φ), and

in the last line, ψ′100 = −ψ100/a0. Both of these steps work only for this particular hydrogenic

wave function, and are not general.

Finally we calculate 〈0(0)|Ĥ (1)Ω̂|0(0)〉; writing ω cos θ = z ω/r, we have

〈100|z2(1
2
r + a0)|100〉 = 1

3
〈100|r2(1

2
r + a0)|100〉 = 9

4
a3

0,

and using a0mc
2 = ~c/α, we get

E(2)

0 = −9(eE)2a3
0

4~cα
.


