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Also we can have for {j,mj}:
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and again, there are 12 in total. Note that the lay-out is such that each column has the same

value of mj = ml +ms, so we can see that the numbers in each table match.

2. First write
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In the second line the last three terms would more correctly be written in the form Ĵ (1)

+ ⊗Ĵ
(2)

− etc;

the first two act only in one of the two spaces.) Since our state is constructed from eigenstates

of (Ĵ(1))2 and (Ĵ(2))2 with eigenvalues 2~2, and since both contributions have one state with

m = 0 so that the last term vanishes, the only terms which need further work are:(
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Hence
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(
|1, 0〉 ⊗ |1,−1〉 − |1,−1〉 ⊗ |1, 0〉

)
= 2~2|α〉.

Also Ĵz|α〉 = −~|α〉, so J = 1, M = −1. The table of Clebsch-Gordan coefficients for this case

is given below in to solution to Q4, so we can check this.

3. i),ii) We use the following extract from the PDG tables, with the red-circled columns for (a)

and (b) and green-circled rows for (c) and (d), recalling that “−1/2” is shorthand for −
√

1/2.
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iii) The results of the initial measurements of the total angular momentum and its z-component

mean that the particle is in state (b). A measurement of Lz gives ~ml, where we can read

off the allowed values of ml from the expansion above, and the probabilities are the squares

of the Clebsch-Gordan coefficients; hence

P (−1) = 1
6
, P (0) = 1

3
, P (1) = 1

2
.

Once ml is known, so is ms: ms = −1
2
−ml.

iv) The measurements of the z-components of orbital and spin angular momenta destroy our

knowledge of the total angular momentum (although its z-component is still−1
2
~). However

ml and ms can be known simultaneously, so the particle is in now the state (d). A subsequent

measurement of |J|2 gives
√
J(J + 1)~ where the allowed values of J and their probabilities

can be read off from the expansion above; hence
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4. We use the following extract from the PDG tables:

The coefficients we want are given by the columns of the central block:
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If the particles, which are bosons, are identical and in an s-wave, their spin state must be

symmetric. Only the states with S = 2 and S = 0 are allowed. Looking at the other columns

of the table confirms that all the S = 1 states are antisymmetric, while all the others are

symmetric.



It is obvious that the S = 2 states must be symmetric because they include the stretched state

|1, 1〉 ⊗ |1, 1〉. This result generalises: for s ⊗ s, the multiplet with S = 2s is symmetric, and

the symmetries alternate as we decrease S. Hence all the even values of S are symmetric for

bosons and antisymmetric for fermions.

5. For this question and the next, the following results for Gaussian integrals will be useful:∫∞
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For V (x) = βx4 and Ψ(x) = e−αx
2/2, and with β̃ ≡ (2mβ/~2), we have E0 < Eb, where
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which is minimised at α = (3β̃)1/3, giving Eb = (3/8)(6~4β/m2)1/3.

6. The wave function should look something like this, vanishing at x = 0 and tending to zero as

x→∞, with no nodes in between:

It is essential that we satisfy the boundary conditions here, so we need to choose a trial wave

function which vanishes at the origin. If we do not, the trial wave function cannot be expanded

in terms of the true wave functions, and the theorem is not valid. Hence we should choose

Ψ(x) = xe−x
2/(2a2) with a as a variational parameter. Then we get∫∞

0
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with β̃ = 2mβ/~2. This is mimimized for a = (3
√
π/2β̃)1/3, with the minimum energy bound

being (81~2β2/4πm)1/3 = 2.345(~2β2/2m)1/3. [Note: I used the unnormalised function Ψ(x)

because I can’t rememebr the normalisation factors for all the oscillator eigenstates. If I’d

had the normalised function φ1(x) to hand, I could have avoided having to divide by the

normalisation integral. However, in this case, I would have had to multiply φ1(x) by
√

2 to

account for the fact that here we are integrating from 0→∞ only.] From now on, I will denote

the energy scale (~2β2/2m)1/3 by E.



If we’d chosen the oscillator ground state Ψ(x) = e−x
2/2a2 instead, we would not have satified

the boundary conditions. If fact, we would have been solving a different problem, namely the

symmetric well V (x) = β |x|. (Although we integrated only from 0 → ∞, integrating from

−∞→∞ would just double the numerator and denominator, leaving the result is unchanged.)

The solution to the semi-infinite well is also that for the first excited state of the symmetric

well.

An easy alternative function to try is xe−x/a, for which we get (3/2)(9 ~2β2/4m)1/3 = 2.476E.

Mathematica can cope with xe−(x/a)
3/2

which gives almost as good a bound as the Gaussian,

2.347E. (I was surprised that it isn’t better, because this is closer to the correct asymptotic

behaviour as x → ∞, but then the Gaussian is already extremely close to the true value.) To

do any better, we probably need a two-parameter trial wave function.

From the web notes, we find that the general solution in terms of Airy functions has the form

CAi(z−µ) +DBi(z−µ), where z = x( ~2/(2mβ))−1/3 and µ = E/E. The function Bi(z) blows

up as z → ∞, so its coefficient D must be zero. Then we choose µ so that the wave function

vanishes at z = 0: Ai(−µ) = 0. This can be achieved for µ = 2.338, 4.088, 5.521... and the first

of these is the solution quoted in the question. The unnormalised ground state wave function

is plotted at the start of this solution.

7. This is a three dimensional problem with spherical symmetry, so we can evaluate the volume

integrals in polar coordinates, with dV = r2 sin θdrdθdφ. To calculate the expectation value of

the kinetic term, we need 〈Ψ|p̂2|Ψ〉 =

∫ ∑
i

|p̂iΨ|2 dV =

∫
|dΨ/dr|2 dV , where we have used

p̂Ψ(r) = −i~∇Ψ(r) and ∇Ψ(r) = r̂
dΨ(r)

dr
. (We could use the radial part of ∇2 instead.)

Defining β̃ = 2mβ/ ~2 (which has dimensions of inverse length, as has µ), we have
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∫∞
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0
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=
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)
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In this case, we note that the kinetic energy term ∼ 1/a2 wins out at both very small and very

large values of a, and Eb(a) many not even have a local minimum if the potential is too weak.

See the sketches below for various values of β.

The question does not ask us to find the minimum in the general case. Instead it asks how

strong the potential has to be for a bound state to be guaranteed. Since the potential vanishes

as r →∞, a bound state must have negative energy. This will definitely be the case if there is

a value or range of a for which the upper bound on the energy is negative.



The figure above shows the effect of varying β (for µ=1). The critical value is the one for which

the minimum of the curve sits exactly at zero: we need simultaneously Eb = 0 and dEb/da = 0.

This gives 4β̃a = (2 + aµ)2 and 2β̃a(2 + 3aµ) = (2 + aµ)3, or a = 2/µ and β̃ = 2µ. So provided

β̃/µ ≥ 2, there will be a bound state. In terms of β, we have β ≥ ~2µ/m.

This analysis does not hold for µ = 0, in which case there is always a minimum with Eb < 0 and

there is always a bound state. We should not be surprised, since this is a Coulomb potential.

In fact, the energy bound is minimised for a = 2/β̃ = ~2/mβ. For β = ~cα, we find a = a0,

the Bohr radius, and Eb = ERy, as expected! This illustrates the fact that if we get lucky

and choose the correct functional form for Ψ, we will reproduce the true ground state. (But of

course we won’t necessarily know that we have done so.)

8. For a potential with one hard and one soft wall, the WKB approximation says that∫ b

a

k(x′)dx′ =

(
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3

4

)
π, where k(x) =

√
2m(E − V (x))/~.

(The RHS gets +π
2

from the hard wall and +π
4

from the soft wall.) One turning point is

obviously at the hard wall, x = 0. For the linear potential V = βx and energy E, the other is

at x = E/β ≡ b, and so we get∫ b

a
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0

√
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√
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√
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√
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2

3

(
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.

Equating this to (n + 3
4
)π gives E =

(
3
2
(n + 3

4
)π
)2/3 (~2β2

2m

)1/3
. The first three states are at

2.320, 4.082, 5.517, in units of
(

~2β2

2m

)1/3
. These can be compared with the exact values given

above in the solution to Q6. We see that the WKB approximation is surprisingly good even

for the lowest states, and rapidly becomes very good indeed.



9. For the harmonic oscillator potential, V (x) = 1
2
mω2x2. The classical turning points are x =

±
√

2E/mω2 ≡ ±b. For two soft walls the WKB integral is (n+ 1
2
)π and so, denoting

√
~/mω =

x0 as usual for the oscillator, we get:∫ b

a

k(x′)dx′ = (x0)
−2
∫ b

−b

√
b2 − x2 dx =

(
b
x0

)2
1
2

[
θ − 1

2
sin 2θ

]π/2
−π/2

= 2E
~ω

π
2
.

where we have used the substitution x = b sin θ to do the integral. Hence we get the exact

result for the energy: E = (n+ 1
2
) ~ω.

In 3D with spherical symmetry, we can use ∇2ψ =
1

r

d2(rψ)

dr2
, and so u(r) = rψ(r) satisfies the

1D Schrödinger equation. Since ψ(0) must be finite, u(0) must vanish. Hence effectively there

is one infinite wall (at r = 0) and a harmonic potential for r > 0. The quantisation condition

is
∫ b
0
k(x′)dx′ = (n + 3

4
)π. The integral is just half of the one above, namely πE/(2 ~ω), so

E = (2n+ 3
2
) ~ω.

The 3D oscillator is equivalent to three 1D oscillators and hence has a zero-point energy of
3
2
~ω. The energy levels of the system are in general (n + 3

2
) ~ω, but only the even values of n

include l = 0 states when expressed in spherical coordinates.

10. We can treat this as an effective one-particle problem with mass µ = mp/2. The potential is

V (r) = ~cα/r, and the outer turning point is rc = ~cα/E; the inner one can be taken to be

the proton radius rp. The dominant contribution to the tunnelling probability comes from e−G,

with G = 2
∫ rc
rp
κ(r)dr, where κ(x) =

√
2µ(V (r)− E)/~. (The tunnelling is inwards, from rc

to rp, but in addition dl = −dr which we take into account by swapping the limits.) Using the

substitution r = rc cos2 x,∫ rc

rp

κ(r)dr =
√

2µE

∫ rc

rp

√
rc/r − 1 dr =

[√
r(rc − r)− rc arccos(

√
r/rc)

]rc
rp

=
√

2µE

(
−
√
rp(rc − rp) + rc arccos(

√
rp/rc)

)
.

The term in brackets tends to rcπ/2 for rp � rc. Hence G ≈
√

2µErcπ/(~) = (rc/RG)1/2

where RG = ~/(π2mpcα) = 2.9 fm. Equivalently we can write G ≈ (EG/E)1/2 where EG =

mpc
2(απ)2 = 0.493 MeV. Since kB = 8.617 × 10−5 eV K−1, temperatures of around 1010 K

would be needed for fusion to be the most probable outcome of a proton-proton collision.

At the surface of the Sun, the typical thermal energy is of the order of kBT ∼ 0.5 eV and the

fusion probability is vanishingly small (∼ 10−430). At the centre, the typical energy rises to

kBT ∼ 860 eV and the corresponding probability is ∼ 10−11. This may be tiny, but it is not

zero and there are a lot of protons in the core of the Sun. Also, the thermal energies follow

a Maxwell–Boltzmann distribution and the fusion probability grows rapidly with energy. For

example, for two protons with an energy 10 times higher, the probablity rises to 5× 10−4.

Of course, the formation of 2He is not enough to generate energy and start building heavier

nuclei. Mostly it just decays back to two protons. But occasionally it will undergo a weak

decay, 2He→ d + e− + νe which does release energy.


