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1.i) 〈n|a〉 = 〈n| (
∑

m am|m〉) =
∑

m am〈n|m〉 =
∑

m amδnm = an

〈b|n〉 = (
∑

m b
∗
m〈m|) |n〉 =

∑
m b
∗
m〈m|n〉 =

∑
m b
∗
mδmn = b∗n

ii) 〈b|a〉 =
(∑

n b
∗
n〈n|

)(∑
m am|m〉

)
=
∑

nm b
∗
man〈n|m〉 =

∑
nm b

∗
namδnm =

∑
n b
∗
nan

iii)
(∑

n |n〉〈n|
)
|a〉 =

∑
n |n〉〈n|a〉 =

∑
n |n〉an = |a〉

Since |a〉 is arbitrary, the operator must be the identity:
∑

n |n〉〈n| = Î.

iv) 〈b|Â|a〉 =
(∑

n b
∗
n〈n|

)
Â
(∑

m am|m〉
)

=
∑

nm b
∗
n〈n|Â|m〉am =

∑
nm b

∗
nAnmam

v) 〈b|
(∑

nmAnm|n〉〈m|
)
|a〉 =

∑
nmAnm〈b|n〉〈m|a〉 =

∑
nm bnAnmam = 〈b|Â|a〉,

using the result of the previous part. Since 〈b| and |a〉 are both arbitrary, the operators

between them are the same:
∑

nmAnm|n〉〈m| = Â.

vi) 〈n|B̂Â|m〉 = 〈n|B̂
(∑

k |k〉〈k|
)
Â|k〉 =

∑
k BnkAkm

vii) 〈b|Â†|a〉 =
∑

nm b
∗
n(Â†)nmam and 〈a|Â|b〉

∗
= (
∑

nm a
∗
mAmnbn)∗ =

∑
nm b

∗
nA
∗
mnam

Since |a〉 and |b〉 are arbitrary, comparing these gives (Â†)nm = A∗mn, the complex conjugate

of the transpose. (Note that the dummy indices have been chosen to aid direct comparison

of the final expressions.)

viii) Let Â|a〉 = |b〉. Then 〈b| = 〈a|Â† = 〈a|Â, since Â† = Â, and hence 〈a|ÂÂ|a〉 = 〈b|b〉 ≥ 0.

2.i) Using the fact that for an orthonormal basis 〈1|1〉 = 1, 〈1|2〉 = 0, etc. (and being careful to

take complex conjugates in the expansion of 〈ψ|) we get

〈ψ|ψ〉 = |C|2
(
〈1| − 2i〈2|+ (1− i)〈3|

)(
|1〉+ 2i|2〉+ (1 + i)|3〉

)
= 7|C|2.

(In practice, we would not write out all these terms explicitly, but jump straight to

〈ψ|ψ〉 = |C|2(1 + 4 + 2).) This implies |C|−1 =
√

7, which fixes the magnitude of C

but not its phase. A simple choice is C = 1/
√

7, but anything differing from this by a

complex phase factor is equally valid.

ii) Taking C = 1/
√

7, we have

|ψ〉 →

 〈1|ψ〉〈2|ψ〉
〈3|ψ〉

 =
1√
7

 1
2i

1 + i

 Ĝ|ψ〉 →

 〈1|Ĝ|ψ〉〈2|Ĝ|ψ〉
〈3|Ĝ|ψ〉

 =
1√
7

 1− 2i
1 + 2i

0

 .

iii)

Ĝ→

 〈1|Ĝ|1〉 〈1|Ĝ|2〉 〈1|Ĝ|3〉〈2|Ĝ|1〉 〈2|Ĝ|2〉 〈2|Ĝ|3〉
〈3|Ĝ|1〉 〈3|Ĝ|2〉 〈3|Ĝ|3〉

 =

 1 −1 0
1 1 0
0 0 0


Note that Ĝ is not Hermitian.



3.i)
√

1
2

(
1
i

)
with eigenvalue 1, and

√
1
2

(
1
−i

)
with eigenvalue −1.

ii)
√

1
2

(
1
1

)
with eigenvalue a+ b, and

√
1
2

(
1
−1

)
with eigenvalue a− b.

iii) Here the ONLY eigenvector is

(
1
0

)
with eigenvalue 1.

iv)

(
cos(θ/2)
sin(θ/2)

)
with eigenvalue 1, and

(
sin(θ/2)
− cos(θ/2)

)
with eigenvalue −1.

v)
√

1
2

(
1
i

)
with eigenvalue eiθ, and

√
1
2

(
1
−i

)
with eigenvalue e−iθ .

(i) and (iv) are Hermitian and so their eigenvalues are real and their eigenvectors are orthog-

onal.

If a and b are real, (ii) is also Hermitian and its eigenvalues are real; its eigenvectors are

orthogonal in any case. (This is always true for real eigenvectors of complex symmetric

marices.) (ii) is a frequently met case and the result for its eigenvectors is worth remembering!

(v) is the rotation matrix in the plane, so it is not surprising that it has no real eigenvectors.

It is unitary and so, as expected, the eigenvalues have unit modulus and the eigenvectors are

orthogonal.

For (iii) the characteristic equation is (λ− 1)2 = 0, and so there is a repeated root. However,

when this is plugged into the equation for the components of the eigenvectors, only one

constraint remains, namely that the lower component vanish. (Compare this with the case

of the identity matrix, where there is no constraint and hence any vector is an eigenvector,

although there are only two linearly-independent ones.) This matrix is neither Hermitian nor

unitary, so it is not guaranteed to have two eigenvectors.

In all cases the sum of the eigenvalues is equal to the trace of the matrix, and their product

to the determinant.

4.i) The characteristic equation is λ(λ2 − 2) = 0 so the eigenvalues are −
√

2, 0,
√

2. The corre-

sponding eigenvectors and the matrix of eigenvectors are:

1
2

 1

−
√

2
1

 ,
√

1
2

 1
0
−1

 , 1
2

 1√
2

1

 ; S = 1
2

 1
√

2 1

−
√

2 0
√

2

1 −
√

2 1

 ,

which is unitary. The product is

S†MS =
1

4

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1

 0 1 0
1 0 1
0 1 0

 1
√

2 1

−
√

2 0
√

2

1 −
√

2 1

 =

 −√2 0 0
0 0 0

0 0
√

2


ii) There are no off-diagonal elements in the second row or column of N, so (0, 1, 0)> is an

eigenvector with eigenvalue 6. Using the result of Q3(ii) above, the other two (unnormalised)

eigenvectors are (1, 0, 1)> and (1, 0,−1)>, with eigenvalues 6 and 4. (This illustrates an



important point of technique: if you can guess an eigenvector, it is trivial to verify your

guess and determine the corresponding eigenvalue at the same time. For a Hermitian matrix,

if you can guess two, you can find the third by orthogonality. If you can guess one, you can

simplify finding the other two by requiring them to be orthogonal to that one.)

iii) The products of M and N are

MN = NM =

 0 6 0
6 0 6
0 6 0

 ⇒ [M,N] = 0

This implies that M and N should have common eigenvectors, but looking at our answers we

see only (1, 0,−1)> in both lists. However the vectors (0, 1, 0)> and (1, 0, 1)> are degenerate

eigenvectors of N and hence any combination of them is also an eigenvector of N. An

equally good choice for an orthogonal pair is (1,
√

2, 1)> and (1,−
√

2, 1)>. This shows that

the eigenvectors of M are also eigenvectors of N, and the pair that are degenerate with

respect to N are distinguished by their eigenvalues of M.

5. First, we note that Ω2 = I, and so Ω3 = Ω etc. Then we can write

eiaΩ = I + iaΩ− 1
2!
a2Ω2 − i 1

3!
a3Ω3 . . .

=
(
1− 1

2!
a2 + 1

4!
a4 . . .

)
I + i

(
a− 1

3!
a3 + 1

5!
a5 . . .

)
Ω = cos a I + i sin aΩ

An alternative method (which harder in this case, but more general) is to transform to a

basis in which Ω is diagonal, by using the matrix of its eigenvectors, S = 1√
2

(
1 1
1 −1

)
. The

eigenvalues of Ω are ±1 and so S†eiaΩS is diagonal with elements e±ia; transforming back to

the original basis gives the same result as above.

6. The following results are useful for Gaussian integrals:∫ ∞
−∞

e−αx
2

dx =
√
π/α, and

∫ ∞
−∞

x2ne−αx
2

dx = (−1)n
dn

dαn

√
π

α
.

i) 1 = 〈1|1〉 = N2
1

∫∞
−∞ 4x2e−x

2
= N2

12
√
π ⇒ N1 = 1/ 4

√
4π.

ii) 〈0|2〉 = N0N2

∫∞
−∞ φ

∗
0(x)φ2(x)dx = 2N0N2

∫∞
−∞(2x2 − 1)e−x

2
dx = 0.

iii) By inspection we see that f(x) = φ2(x)/(4N2) + φ0(x)/(2N0), and hence f0 = π1/4/2,

f2 = π1/4/
√

2, f1 = f3 = 0. (Indeed fn = 0 for all other n.)

iv) We can do this question with Gaussian integrals: 〈1|p̂|0〉 = −i~
∫∞
−∞ φ1(x) d

dx
φ0(x)dx etc.

An alternative (possibly easier) way is to use the orthogonality of the basis functions as

follows. By explicit differentiation of the functions, we get p̂|0〉 = i~(N0/2N1)|1〉 and

p̂|1〉 = −i~
(
N1/N0|0〉 − N1/(2N2)|2〉

)
, and hence 〈1|p̂|0〉 = i~N1/N0 = i~/

√
2 and

〈2|p̂2|0〉 = −~2N0/(4N2) = −~2/
√

2.

[By the time you get these solutions we should have met creation and annihilation operators

in the lectures. Check your results for this part, noting that we have set x0 = 1.]



v) The equation for h(x) is Hermite’s equation with 2n replaced by E− 1. The finite solutions

of Hermite’s equation (those where the recursion relation for the coefficients of a series

solution terminates) are those for which n is a non-negative integer. This means we need

E− 1 = 2n, i.e. E to be a positive odd integer. (See Appendix A.4 of the lecture notes.)

7. i) 〈x|ψ〉 = ψ(x)

ii) 〈φ|ψ〉 =
∫∞
−∞ φ

∗(x′)ψ(x′) dx′

iii) 〈φ|x̂|ψ〉 =
∫∞
−∞ φ

∗(x)xψ(x) dx

iv) 〈x|p̂|ψ〉 = −i~dψ(x)
dx

v) 〈p|ψ〉 =
∫∞
−∞〈p|x

′〉〈x′|ψ〉 dx′ = 1√
2π~

∫∞
−∞ e−ipx

′/~ ψ(x′) dx′
(
= Ψ(p)

)
vi) 〈ψ|Ĥ|ψ〉 =

∫ ∞
−∞

ψ∗(x)

(
− ~2

2m

d2ψ

dx2
+ V (x)ψ(x)

)
dx

Only (i) and (iv) are functions of position, and (v) is a function of momentum (the Fourier

transform of ψ). Expressions like (i) could be written as integrals too, for example:

〈x|ψ〉 =
∫∞
−∞〈x|x

′〉〈x′|ψ〉dx′ =
∫∞
−∞ δ(x − x

′)ψ(x′)dx′ = ψ(x), where “x” is a parameter, not

the integration variable. Elsewhere x and x′ are used interchangeably as (dummy) integration

variables.

vii) 〈r|ψ〉 = ψ(r)

viii) 〈φ|ψ〉 =
∫∞
−∞

∫∞
−∞

∫∞
−∞ φ

∗(r′)ψ(r′) dx′dy′dz′ (or d3r′ or dV , with a single integration sign

and the infinite limits usually implied).

ix) 〈φ|x̂|ψ〉 =
∫
φ∗(r′)r′ψ(r′) d3r′

=
(∫

φ∗(r′)x′ψ(r′) d3r′
)
ex +

(∫
φ∗(r′) y′ψ(r′) d3r′

)
ey +

(∫
φ∗(r′) z′ψ(r′) d3r′

)
ez

x) 〈r|p̂|ψ〉 = −i~∇ψ(r)

xi) 〈p|ψ〉 = 1
(2π~)3/2

∫
e−ip·r

′/~ ψ(r′) d3r′

xii) 〈ψ|Ĥ|ψ〉 =

∫
ψ∗(r)

(
− ~2

2m
∇2ψ(r) + V (r)ψ(r)

)
d3r.

Here (ix) and (x) are vectors, with (x) being a vector function of position. The other functions

(vii) and (xi) are both scalars. All the functions depend on three variables (the components

of either position or momentum).

8.i) B̂[Â, Ĉ] + [Â, B̂]Ĉ = B̂ÂĈ − B̂ĈÂ+ ÂB̂Ĉ − B̂ÂĈ = −B̂ĈÂ+ ÂB̂Ĉ = [Â, B̂Ĉ]

ii) First, we note that ÂB̂ = B̂Â + cÎ, and so B̂mÂB̂n−m = B̂m+1ÂB̂n−m−1 + cB̂n−1. Using

this repeatedly, we can take Â through the chain of B̂s in n steps, picking up a term cB̂n−1

at each step. This gives ÂB̂n = B̂nÂ+ ncB̂n−1.

Alternatively, we can use induction. We first assume the result is true for some k:

[Â, B̂k] = ckB̂k−1. Then we can show

[Â, B̂k+1] = [Â, B̂kB̂] = [Â, B̂k]B̂ + B̂k[Â, B̂] = ckB̂k−1B̂ + cB̂k = c(k + 1)B̂k;



hence if it holds for n = k it also holds for n = k + 1. However, we know that it is true by

definition for n = 1, and so it must be true for all n ≥ 1.

Using the power series for eB̂, we get [Â, eB̂] =
∑

n=0
1
n!

[Â, B̂n] =
∑

n=1
c

(n−1)!B̂
n−1 = c eB̂.

iii) Let Q(x) =
∑

m qmx
m, so R(x) =

∑
mmqmx

m−1. Then from the result above, with c = −i~,

[p̂, Q̂] = −i~
∑

m qm[p̂, x̂m] = −i~
∑

mmqmx̂
m−1 = −i~R̂.

An alternative approach is to act on be an arbitrary vector |f〉. Then, in the x-representation

where 〈x|Q̂|f〉 = Q(x)f(x), we get

[p̂, Q̂]|f〉 −→
x
−i~

(
d(Qf)

dx
−Q(x)

df

dx

)
= −i~

dQ

dx
f(x) = −i~R(x)f(x).

Since |f〉 is arbitrary, this implies the operator relation [p̂, Q̂] = −i~R̂.

iv) We can use [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ and [Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] to reduce the

compound commutators to simple ones, without ever writing expressions like ÂB̂ − B̂Â.

Furthermore the only non-vanishing commutators among the x̂i and p̂j are [p̂i, x̂i] = −i~Î.

(a) [L̂x, x̂] = [L̂x, p̂x] = 0 because x̂ and p̂x commute with all of ŷ, p̂z, ẑ and p̂y.

(b) [L̂x, ŷ] = [ŷ p̂z, ŷ]− [ẑ p̂y, ŷ] = 0− ẑ[p̂y, ŷ]− [ẑ, ŷ]p̂y = i~ẑ.

(c) [L̂x, p̂z] = −[ẑ p̂y, p̂z] = −[ẑ, p̂z]p̂y = −i~p̂y.
The full set of relations like these can be written

[L̂i, x̂j] = i~
∑
k

εijkx̂k, [L̂i, p̂j] = i~
∑
k

εijkp̂k,

where εijk is the 3D antisymmetrix symbol: εijk = 1 if {i, j, k} is a cyclic permutation of

{1, 2, 3}, −1 if it is an anticylic permutation (e.g. {2, 1, 3}), and 0 if any two indices are the

same.

v) In the position representation we have (as in part (iii))

[p̂, V (x̂)]|f〉 −→
x
−i~

(
∇
(
V (r)f(r)

)
− V (r)∇f(r)

)
=
(
−i~∇V (r)

)
f(r).

Again, since |f〉 is arbitrary, the relation must hold for the operators and so we get

[p̂, V (x̂)] −→
x
−i~∇V (r).

For V = V (r), the chain rule gives

∇V =
∑
i

ei
∂

∂xi
V (r) =

∑
i

ei
∂r

∂xi

dV (r)

dr
=
∑
i

ei
xi
r

dV (r)

dr
= r̂

dV

dr
.

9. For p0 =
(
2 ex − ez

)
~/a, we have

〈r|p0〉 = ( 1
2π~)3/2eip0·r/~ = ( 1

2π
)3/2ei(2x−z)/a,

〈p|p0〉 = δ(p− p0) = δ(px − 2~/a)δ(py − 0)δ(pz + ~/a).

Note that both of these are scalar functions.


