Question 1 asks you to determine the interactions responsible for different processes. Questions 2 and 6 are on the flavour quantum numbers of hadrons. Questions 3 to 5 are on processes involving particles beyond the first generation.

- 1. Indicate which of the following processes are allowed, and classify them as strong, electromagnetic or weak.
 - (a) $K^- + p \rightarrow \Lambda + \pi^0$
 - (b) $\nu_e + p \to p + \pi^+ + e^-$
 - (c) $\gamma + p \to p + K^+ + K^-$
 - (d) $\nu_e + p \to n + K^+ + K^- + e^+$
 - (e) $p + \overline{p} \to \pi^+ + \pi^- + \pi^0$
 - (f) $p \to \pi^0 + e^+$
 - (g) $\Sigma^0 \to \Lambda + e^+ + e^-$
 - (h) $\Xi^- \to \Lambda + \pi^-$
- 2. Identify the quark constituents of hadrons with the following values for the flavour quantum numbers (Q, B, S, C, \tilde{B}) :
 - (a) (+1, 0, 0, +1, 0), (b) (0, 0, -1, 0, +1), (c) (+2, +1, 0, 0, 0),
 - (d) (+1, -1, +1, 0, 0), (e) (-1, +1, -1, 0, -1).

Determine also the value of I_3 for each.

For each of the particles (a)–(d), list its isospin partners and give the value of I for the resulting multiplet.

- 3. Muon and τ neutrinos can be distinguished from electron neutrinos by their interactions with electrons. Explain this by drawing the lowest-order Feynman diagrams for $\nu_e + e^-$ and $\nu_\mu + e^-$ scattering.
- 4. (a) The $N^+(1900)$ baryon is a nonstrange, charmless excited state of the proton. It has been observed to decay by the process

$$N^+ \to K^0 + \Sigma^+$$
.

Draw a quark-level diagram for this.

(b) Draw quark-level diagrams for the process

$$\gamma + p \to K^0 + \Sigma^+,$$

and for the subsequent decays,

$$K^0 \to \pi^+ + \pi^-$$
, and $\Sigma^+ \to p + \pi^0$.

- 5. Draw quark-level diagrams for the decays $D^0 \to K^- + \pi^+$ and $D^0 \to K^+ + \pi^-$. (The D^0 meson has charm C = +1 and $I_3 = -\frac{1}{2}$.) Which of these decays do you expect to occur at the higher rate?
- 6. From time to time (most recently by the LEPS Collaboration in 2008), claims are made of evidence for a new particle, the Θ^+ . This evidence comes from photoproduction experiments using deuterium (p+n),

$$\gamma + d \to \Theta^+ + K^- + p$$
,

followed by the decay

$$\Theta^+ \to n + K^+$$
.

The production rate is consistent with an electromagnetic process, and the decay with a strong one.

Determine the flavour quantum numbers, I_3 , B, and S, for this particle. Deduce the minimum quark content that could explain these and comment on how the Θ^+ would fit into the usual quark model.