Lecture 7/8

Unstable states (particle, nucleus, atom, ...)

Decay rate: λ (probability per unit time)

- lifetime: $\tau = 1/\lambda$; half-life: $\tau_{1/2} = \ln(2)/\lambda$
- width in energy: $\Gamma = \hbar/\tau$
- N(t), no. of unstable particles at time t, satisfies decay equation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

or

$$N(t) = N_0 e^{-\lambda t}$$

activity: λN (number of decays per unit time)

Hadron lifetimes (very rough rule of thumb)

$$\begin{array}{lll} \tau < 10^{-20} \; s & strong \\ \tau \sim 10^{-20} - 10^{-15} \; s & EM \\ \tau > 10^{-15} \; s & weak \end{array}$$

Weak interaction

Charged current: W^{\pm} exchange

Neutral current: Z^0 exchange

$$β$$
 decay: ${}^{A}Z \rightarrow {}^{A}(Z+1) + e^{-} + \overline{v}_{e}$, kinetic energy release

$$Q = [M_{\text{nuc}}(Z, A) - M_{\text{nuc}}(Z + 1, A) - m_{e} - m_{v}]c^{2}$$

shared between e and $\overline{v} \rightarrow$ continuous spectrum, end point: Q

Parity violation

 β decay of polarised 60 Co

- more electrons emitted opposite to nuclear spin
- → breaks parity symmetry (p odd but J even)
 - electrons mostly negative helicity
 - antineutrinos positive helicity

Helicity and chirality

Helicity: sign of spin eigenvalue along momentum

- +: right-handed
- –: left-handed

Weak bosons couple only to

- left-handed fermions $(u_L, d_L), (e_L^-, v_{eL})$ (doublets)
- right-handed antifermions $(\overline{u}_R, \overline{d}_R), (e_R^+, \overline{v}_{eR})$
- \rightarrow *P* and *C* violated (no coupling to e_R^- , e_L^+ etc: singlets) but *CP* preserved (almost)

Problem: Weak bosons couple to conserved LH current (V - A)

- helicity independent of frame only for massless particles: chirality
- and all fermions have masses: e, N, q, and even ν

(Resolution by Nambu, Anderson, Brout, Englert and Higgs)