Lecture 5/6

Charge conjugation

Replace every particle by its antiparticle

Assuming Hamiltonian is unchanged $\rightarrow C$ parity conserved

C: multiplicative quantum number

Neutral particle can be own antiparticle \rightarrow intrinsic *C* parity Photon: C = -1 (quantum nos often written J^{PC} , eg γ : $J^{PC} = 1^{--}$)

Particle-antiparticle state with relative orbital angular momentum L and total spin S:

$$C = (-1)^{L+S}$$

P, C conserved by strong and EM interactions but not by weak

Time reversal

Reverses direction of time Momentum \mathbf{p} , angular momentum \mathbf{J} both odd under T Quantum field theories symmetric under $CPT \to \text{antiparticles}$

Spin and statistics

Identical particles: wave functions either even or odd under exchange

- integer spin, π , γ , H, ..., even: bosons
- half-integer spin, e, p, q, ..., odd: fermions

Two identical spin- $\frac{1}{2}$ fermions: spin state is odd if S=0, even if S=1 (and spatial state must have opposite symmetry)

Quark model (for matter as we know it)

Quarks: spin- $\frac{1}{2}$ fermions with charges

$$B Q I_3 (Q = \frac{1}{2}B + I_3)$$

$$u + \frac{1}{3} + \frac{2}{3} + \frac{1}{2}$$

$$d + \frac{1}{3} - \frac{1}{3} - \frac{1}{2}$$

Antiquarks: reverse all signs

Hadrons

mesons
$$q\overline{q}$$
 $B=0$ baryons qqq $B=+1$ antibaryons \overline{qqq} $B=-1$

Colour: 3-valued charge

- quarks: r, b, g; antiquarks: \overline{r} , \overline{b} , \overline{g}
- hadrons: colour singlets

Baryon colour wave functions: odd under exchange

Parity

- mesons: $P = (-1)(-1)^L$ $(q\overline{q} \text{ pair odd})$
- baryon ground states: even (excited states: complicated)

C parity

• neutral mesons: $C = (-1)^{L+S}$

Isospin multiplets

Particles with different charges, masses differing by only few MeV distinguished by values of l_3 (counts nos of u, d quarks)

```
 \begin{array}{ll} I=0 & \text{singlet} & \omega \\ I=\frac{1}{2} & \text{doublet} & (\rho,\,n) \\ I=1 & \text{triplet} & (\pi^+,\,\pi^0,\,\pi^-) \\ I=\frac{3}{2} & \text{quartet} & (\Delta^{++},\,\Delta^+,\,\Delta^0,\,\Delta^-) \end{array}
```

3rd component: $I_3 = +I, \ldots, -I$ (like angular momentum)