Lecture 3/4

Angular momentum in quantum mechanics

Eigenvalues (same pattern for $\widehat{\mathbf{L}}$, $\widehat{\mathbf{S}}$ and total $\widehat{\mathbf{J}}$)

$$|\mathbf{J}|^2 = J(J+1)\hbar^2, \qquad J \ge 0$$
 $J_z = M_J \hbar, \qquad M_J = -J, \dots, +J \quad \text{in steps of } 1$

[Note: J denotes the quantum number, not the magnitude $(|\mathbf{J}|)$] Orbital angular momentum: quantum numbers L, M_L must be integer Intrinsic spin: S, M_S can be half-integers π . H S=0

$$\pi, H$$
 $S = 0$
 e, v, N, q $S = \frac{1}{2}$
 g, γ, W, Z $S = 1$

Addition of angular momenta $\hat{\mathbf{J}} = \hat{\mathbf{J}}_1 + \hat{\mathbf{J}}_2$ possible values of total angular momentum quantum number $J = |J_1 - J_2|, \ldots, J_1 + J_2$ in steps of 1 (triangle rule)

Parity

Reflection of all coordinates: $\mathbf{r} \rightarrow -\mathbf{r}$

Vectors \mathbf{r} , \mathbf{p} odd under parity; scalars $|\mathbf{r}|$, t even Angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ even ("axial" vector)

Assuming Hamiltonian is even \rightarrow parity P conserved P: multiplicative quantum number

Single particle with orbital angular momentum *L*:

$$P = (-1)^L$$

Two particles with L_1 , L_2 : $P = (-1)^{L_1 + L_2}$ (multiply)

or with relative angular momentum L_r (ignoring $L_{\rm CM}$): $P = (-1)^{L_r}$

Photon intrinsic parity: P = -1

Fermion and antifermion: opposite intrinsic parities

$$e^-$$
, v , N , q $P = +1$

$$e^+, \overline{v}, \overline{N}, \overline{q} \quad P = -1$$

Internal symmetries

Symmetries under rotations of phases of wave functions

```
 \begin{array}{lll} \rightarrow \text{ conserved charges} \\ \text{ electric charge} & Q & \text{absolutely conserved} \\ \text{ baryon number} & B & \text{ strong, EM and weak} \\ & & & & & & & & & \\ \text{ (not in Big Bang or GUTs)} \\ \text{ lepton number} & L & \text{ like } B \text{ (but } v \text{ masses?)} \\ \text{ isospin 3rd component} & I_3 & \text{ strong and EM but not weak} \\ \text{ Isospin multiplets: } I_3 = -I, \dots, +I \text{ in steps of 1} \\ & p: I_3 = +\frac{1}{2} \\ & n: I_3 = -\frac{1}{2} \end{array} \right\} \text{ magnitude } I = \frac{1}{2} \text{ (like spin-}\frac{1}{2}\text{)}
```