Lecture 21/22

Lepton mixing

W bosons couple to lepton doublets

$$\begin{pmatrix} \mathbf{v}_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \mathbf{v}_\mu \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \mathbf{v}_\tau \\ \tau^- \end{pmatrix}$$

- v_e , v_μ , v_τ are mixtures of mass eigenstates v_1 , v_2 , v_3
- mixing angles are large (up to 45°)
- but masses are very small (< 1 eV)
- ightarrow effects only visible over long distances (\gtrsim 1 km for $E_{\rm v} \gtrsim$ 1 MeV)

CP violation

Weak interaction with one or two generations

 violates parity P and charge conjugation C but preserves CP (couples to LH fermions and RH antifermions)

Mixing between three generations (CKM matrix)

- three mixing angles and one complex phase
- \rightarrow small violation of *CP* symmetry in weak interaction (observed in $K^0 \overline{K}^0$ and $B^0 \overline{B}^0$ mesons)

Needed to explain origin of matter in universe: Sakharov conditions

- 1) nonconservation of baryon number
- 2) violation of C and CP
- 3) universe out of thermal equilibrium

Origins of mass

Weak interaction couples to left-handed doublets

$$\begin{pmatrix} u_L \\ d_L' \end{pmatrix} \qquad \begin{pmatrix} v_{eL} \\ e_L^- \end{pmatrix}$$

but not to right-handed singlets u_R , d_R , e_R^- , v_{eR}

Massless fermions with g = 2 (intrinsic magnetic moments)

- chirality preserved by interactions with vector gauge fields
- left-handed weak isospin conserved

Interactions with weak doublet of spin-0 fields

$$\begin{pmatrix} \phi^- \\ \phi^0 \end{pmatrix}$$

- change chirality of fermions
- conserve weak isospin
- but to generate masses also need ...

... a Mexican hat

Quartic potential for scalar fields ϕ

- vacuum expectation value $\langle \phi \rangle \neq 0$ everywhere in space (like magetisation in a permanent magnet)
- symmetry is hidden or "spontaneously broken" (not visible sitting in circular valley round brim)
- nonzero ⟨φ⟩ gives fermions mass (Nambu)
- also gives vector bosons mass (Brout, Englert, Higgs)
- \bullet restoring force for radial oscillations \to massive spin-0 particle: Higgs boson

Brout-Englert-Higgs field generates

- charged lepton masses: from 0.5 MeV to 1.8 GeV
- "current" (high-energy) quark masses: from \sim 5 MeV to 173 GeV
- W^{\pm} , Z^0 masses: \sim 80 GeV
- possibly neutrino massses: < 2 eV (but then why so small?)
- but $m_{u,d} \simeq 5 \text{ MeV} \rightarrow \text{less than} \sim 10\%$ of mass as we know it (protons and neutrons of ordinary matter)

QCD vacuum

- condensate of $q\overline{q}$ pairs acts like another BEH field
- ullet hides (chiral) isospin symmetries of \sim massless quarks
- generates constituent quark masses: ~ 350 MeV
- excitations round brim of hat → very light hadrons: pions (would be exactly massless without weak BEH field)
- pions doubly special
 - mediate longest-range strong forces in nuclei
 - carry "memory" of the symmetries of QCD