Lecture 19/20

Three-flavour quark model

Three light quarks: u, d, s

- mass differences ≪ hadron masses
- \rightarrow group in supermultiplets with same J^P , similar masses but different charges and hypercharges (or strangeness)
 - examples 0⁻ meson nonet: (K^0, K^+) , (π^-, π^0, π^+) , η , η' , (K^-, \overline{K}^0) $\frac{1}{2}^+$ baryon octet: (n, p), $(\Sigma^-, \Sigma^0, \Sigma^+)$, Λ , (Ξ^-, Ξ^+) $\frac{3}{2}^+$ baryon decuplet: $(\Delta^-, \Delta^0, \Delta^+, \Delta^{++})$, $(\Sigma^{*-}, \Sigma^{*0}, \Sigma^+)$, (Ξ^{*-}, Ξ^{*0}) , Ω^-
 - weight diagram: plot Y = B + S against I_3 ; each row composed of isospin multiplets; different rows have different strangeness

Masses given approximately by

$$M = [N(q) + N(\overline{q})]M_q + [N(s) + N(\overline{s})]\Delta M_s + \frac{\mathcal{E}_{ss}}{\hbar^2} \langle \widehat{\mathbf{S}}_1 \cdot \widehat{\mathbf{S}}_2 \rangle$$

- where $M_q \simeq 350$ MeV (constituent quark mass)
- $\delta M_s \simeq 150 \text{ MeV}$ (extra mass of s quark)
- $\mathcal{E}_{ss} \simeq$ 170 MeV (colour magnetic spin-spin interaction)

Except π : much lighter than expected (140 MeV not \sim 600 MeV)

Heavy quarks

Masses of c, b quarks \gg typical momenta in hadrons $\sim \hbar/(1\,\mathrm{fm})$

- nonrelativistic
- QQ mesons bound by Coulomb-like potential: "quarkonia"

t quark never forms hadrons

- lifetime $\tau \sim 10^{-25}$ s (weak decay!)
- ullet < time for signal to cross a hadron \sim 1 fm/c