Lecture 17/18

Three generations

Three copies of fermions that constitute ordinary matter

- six flavours of quark (in three colours), six flavours of lepton
- plus 12 antifermions

						Q
и	up	С	charm	t	top	$+\frac{2}{3}$
d	down	s	strange	b	bottom	$-\frac{1}{3}$
v_e		ν_{μ}		ν_{τ}		0
e^{-}	-	μ^-		$ au^-$		-1

Each generation satisfies anomaly cancellation condition

$$\sum_{f} Q_{f} = 3\left(+\frac{2}{3}\right) + 3\left(-\frac{1}{3}\right) + \left(-1\right) + 0 = 0$$

 \sim

Flavour numbers

Net number of quarks of each flavour q: $N_q = N(q) - N(\overline{q})$

- conserved by strong and EM interactions
- baryon number: $B = \frac{1}{3} \sum_{q} N_q$
- 3rd component of isospin: $I_3 = \frac{1}{2}(N_u N_d)$
- strangeness: $S = -N_s$
- charm: $C = N_c$
- "bottomness": $B = -N_b$
- "topness": $T = N_t$

hypercharge: $Y = B + S + C + \widetilde{B} + T$

EM charge of hadron: $Q = I_3 + \frac{1}{2} \left(B + S + C + \widetilde{B} + T \right) = I_3 + \frac{1}{2} Y$ Lepton flavour numbers

- conserved by EM interaction, by weak on normal length scales
- $L_l = N(l^-) N(l^+) + N(v_l) N(\overline{v}_l)$, for $l = e, \mu, \tau$

Flavour mixing

W bosons couple to weak isospin doublets

$$\begin{pmatrix} u \\ d' \end{pmatrix} \quad \begin{pmatrix} c \\ s' \end{pmatrix} \quad \begin{pmatrix} t \\ b' \end{pmatrix} \quad \begin{pmatrix} \nu_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$$

Weak eigenstates d', s', b' are mixtures of mass eigenstates d, s, b

- otherwise s, b could not decay
- d − s mixing largest

$$d \simeq d' \cos \theta_C - s' \sin \theta_C$$

$$s \simeq d' \sin \theta_C + s' \cos \theta_C$$

Cabbibo angle: $\theta_C \simeq 13^\circ$

• decays of strange particles suppressed by factor of $\sin^2\theta_C \simeq 0.05$