Lecture 15/16

Shell model

Simplest version

- nucleons move independently in average potential
- potential \sim between harmonic oscillator and square well (saturation of short-range forces)
- strong spin-orbit interaction splits orbitals with $j = l \pm \frac{1}{2}$ larger j has lower energy
- \rightarrow level ordering (labels: $n = n_r + 1, I, j$)

$$1s_{1/2} \left| 1p_{3/2} 1p_{1/2} \right| 1d_{5/2} 2s_{1/2} 1d_{3/2} \left| 1f_{7/2} \left| 2p_{3/2} 1f_{5/2} 2p_{1/2} 1g_{9/2} \right|$$

- degeneracies of orbitals: 2*j* + 1
- completely filled (closed) shells at magic numbers

$$Z$$
, $N = 2$, 8, 20, 28, 50, 82, 126

Ground states

Fill shells and subshells in order (Pauli principle)

- filled subshell: $J^P = 0^+$
- valence nucleons (outside filled shell) determine J^P alternatively for nearly full shell: valence "holes"
- pairing: even number of valence protons (or neutrons) form pairs with $J^P = 0^+$ (all even-even nuclei: $J^P = 0^+$)

Example: ¹⁷O,
$$Z = 8$$
, $N = 9$

$$p: (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2$$

$$n: (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2 (1d_{5/2})^1$$

• one valence neutron in $1d_{5/2} \rightarrow J^p = \frac{5}{2}^+$

Exited states

Single-particle excitations

- ullet one nucleon excited to higher level in same shell, $E\sim$ few MeV
- example: ¹⁷O has $J^P = \frac{1}{2}^+$, $\frac{3}{2}^+$ states with $E \lesssim 5$ MeV

Mirror nuclei

- swap Z ↔ N; example: ¹⁷O and ¹⁷F
- very similar spectra (charge symmetry of forces)

Odd-odd nuclei

unpaired proton with I_p, j_p and neutron with I_n, j_n
can give low-energy states with

$$J = |j_p - j_n|, \ldots, j_p + j_n$$
 $P = (-1)^{l_p + l_n}$

Nuclei far from closed shells

- many valence nucleons
- collective rotations and vibrations
- very-low-energy states (∼ few 100 keV)