Lecture 13/14

Nuclear binding energies

Binding energy per nucleon maximum for 56 Fe: $B/A \simeq 8.8$ MeV

- nuclei with A < 56 can lower energy by fusion (powers stars, stops around ⁵⁶Fe)
- nuclei with A > 56 can lower energy by α decay or fission (fission: basis for nuclear reactors, occurs for $A \gtrsim 225$)

Beta-stable nuclei

- light nuclei ($A \lesssim 20$) $N \simeq Z$ (asymmetry energy)
- heavier nuclei N > Z (effect of Coulomb energy)

Drip lines: unable to bind another p or $n \rightarrow$ separation energy

$$S_p = M(Z-1,A-1) + M(^1H) - M(Z,A) < 0$$

or
$$S_n = M(Z, A-1) + M_n - M(Z, A) < 0$$

Beta decays

Nuclei away from line of stability decay by weak interaction

- odd A: only one stable isobar
- even A: one or two stable isobars*
- M(Z,A) M(Z+1,A) > 0: ${}_{Z}^{A}X$ decays by β^{-}
- $M(Z,A) M(Z-1,A) > 2m_e$: by β^+ or electron capture (EC)
- $2m_e > M(Z,A) M(Z-1,A) > 0$: only by electron capture
- * M(Z,A) M(Z+2,A) > 0 but M(Z,A) M(Z+1,A) < 0: ${}^A_Z X$ can decay, but only by very rare double- β process

Alpha decays

 4_2 He nucleus (α particle) light, small Z, strongly bound B=28.3 MeV All nuclei with A>208 can decay by emitting α particles (also a few lighter nuclei can)

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$$

Rate determined by tunnelling through Coulomb barrier

• decay rate $\lambda \propto T$, tunnelling factor

$$T = \exp\left[-\sqrt{E_G/Q}\right]$$

Gamow energy: $E_G = 2(\pi Z_1 Z_2 \alpha)^2 M_r c^2$ ($Z_1 = Z - 2$, $Z_2 = 2$, M_r : reduced mass)

exponential dependence on energy release, Q ~ 2 − 10 MeV
→ lifetimes range over > 30 orders of magnitude