Lecture 11/12

Nuclear masses

Nucleus specified by

- atomic number Z (protons)
- mass number A (baryon number)
 neutron number N = A Z

Isotopes: same Z, different A; isobars: same A, different Z

Easier to measure atomic masses M(Z,A)

Binding energy:
$$B(Z,A) = [ZM(^{1}H) + NM_{n} - M(Z,A)]c^{2}$$

Mass excess:
$$\Delta(Z, A) = M(Z, A) - A M_u (M_u = 1 u = 931.5 \text{ MeV}/c^2)$$

Saturation of nuclear forces: binding energy per nucleon

$$B/A \sim 8 \, \text{MeV}$$
 for $A \gtrsim 12$

Q values can usually be calculated from atomic masses only

- α decay: $Q = [M(Z,A) M(Z-2,A-4) M(^4He)]c^2$
- β decay: $Q = [M(Z,A) M(Z+1,A)]c^2$
- ignore all electrons provided all particles are constituents of normal atoms(p, n, e⁻) or are neutral (γ, ν, v̄) (electrons already accounted for in atomic masses)
- anything else $(e^+, \pi^-, \overline{p})$ needs more care!
- changes in electronic binding energies normally negligible

Semi-empirical mass formula

$$M(A,Z) = ZM(^{1}H) + (A-Z)M_{n} - a_{v}A + a_{s}A^{2/3} + a_{c}\frac{Z(Z-1)}{A^{1/3}} + a_{a}\frac{(A-2Z)^{2}}{A} - \delta_{p}$$

- v: volume (saturation of forces)
- s: surface (fewer neighbours)
- c: Coulomb (repulsion between protons)
- a: asymmetry (Pauli principle for N ≠ Z)
- p: pairing (J = 0 pairs of identical particles)

$$\delta_p = egin{cases} +a_p\,A^{-1/2} & ext{even-even} \ 0 & ext{odd}\,A \ -a_p\,A^{-1/2} & ext{odd-odd} \end{cases}$$

Typical values, in MeV/c^2

$$a_v = 15.85, \ a_s = 18.34, \ a_c = 0.71, \ a_a = 23.21, \ a_p = 12.0$$