Lectures 1/2

Constituents of matter ("first generation")

up quark	И	anti-up	\overline{u}
down quark	d	anti-down	\overline{d}
electron	e^-	positron	e^+
neutrino	ν_e	antineutrino	$\overline{\nu}_e$

Carriers of forces

strong (nuclear)	gluon	g
electromagnetic	photon	γ
weak (nuclear)	vector bosons	W^{\pm},Z^0
	Higgs boson	Н

Leptons: only EM or weak interactions: e, v

Hadrons: strongly interacting, built out of quarks

 baryons: 3 quarks proton, p; neutron, n (nucleons, N)

Fermions: arrows follow "flow" of charge

- mesons: quark+antiquark pions, π[±], π⁰
- exotics?

Feynman diagrams

Represent process by drawing line for each particle involved Joined by vertices representing interactions Conserve charges at every vertex

Sensible units

Energies in multiples of eV: MeV (10⁶), GeV (10⁹), TeV (10¹²)

Masses in "natural units": MeV/c^2 , GeV/c^2

Lengths in: fm $(10^{-15} \text{ m or 1 fermi})$

Two very useful constants

 $\hbar c \simeq$ 200 eV nm = 200 MeV fm

$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \simeq \frac{1}{137}$$

Exchange forces

Exchange of a virtual particle of mass $M \rightarrow$ force with range

$$R \simeq \frac{\hbar}{Mc}$$

