You may use the following data and formula. The atomic mass unit is $M_u = 931.494 \text{ MeV}/c^2$. The quantum numbers of the photon are $J^{PC} = 1^{--}$. The quantum numbers of the pion are $J^{PC} = 0^{-+}$. The semi-empirical mass formula can be written in the form: $$M(A, Z) = Z M(^{1}H) + (A - Z)M_{n} - a_{v} A + a_{s} A^{2/3} + a_{c} \frac{Z^{2}}{A^{1/3}} + a_{a} \frac{(A - 2Z)^{2}}{A} - \delta_{p},$$ where $$\delta_p = \begin{cases} +a_p A^{-1/2} & \text{even-even} \\ 0 & \text{odd } A \\ -a_p A^{-1/2} & \text{odd-odd} \end{cases}.$$ 1. (a) Draw all the lowest-order Feynman diagrams that represent Compton scattering on a positron: $$\gamma + e^+ \rightarrow \gamma + e^+$$. [5 marks] - (b) Explain briefly the physical origin of the terms $-a_v A$ and $+a_s A^{2/3}$ in the semiempirical mass formula. [5 marks] - (c) The cross section for the reaction $n + {}^{32}S \rightarrow p + {}^{32}P$ is 60 mb. Calculate the rate at which ${}^{32}P$ atoms are produced when 100 g of ${}^{32}S$ is exposed to a neutron flux of 10^{14} cm⁻²s⁻¹. [5 marks] - (d) The η meson has a width of 1.3 keV. State which interaction you expect to be responsible for its decay. Explain your reasoning. [5 marks] - (e) The ϕ meson consists of an s quark and an \bar{s} antiquark in their orbital ground state with a total spin S=1. Deduce the parity and C parity of this particle. [5 marks] 2. The order of the lowest levels in the simple spherical shell model is: $$1s_{1/2} \mid 1p_{3/2} \ 1p_{1/2} \mid 1d_{5/2} \ 2s_{1/2} \ 1d_{3/2} \mid 1f_{7/2} \mid 2p_{3/2} \ 1f_{5/2} \ 2p_{1/2} \ 1g_{9/2} \mid,$$ where the vertical lines indicate the larger energy gaps. - (a) Define the notation used above to label the levels. Outline briefly the origin of this pattern of levels. [10 marks] - (b) Explain why the number 20 is known as a "magic number" in nuclear physics. [4 marks] - (c) Use the pattern of levels given above to predict the spin and parity for the ground state of ³⁹₁₉K, and for the first two excited states with the same parity. [5 marks] - (d) The ground state of $^{40}_{19}$ K has spin-parity $J^P = 3^-$. Give a shell-model interpretation of this state, and suggest other low-lying states you would expect to see in the excitation spectrum of $^{40}_{19}$ K. [6 marks] - 3. (a) A nucleus with atomic number Z and mass number A decays by β^+ emission. Define this process, indicating all the particles in the final state. Show that the energy released in this decay is $$Q = [M(Z, A) - M(Z - 1, A) - 2m_e]c^2,$$ where M(Z, A) and M(Z - 1, A) are the atomic masses of the isobars involved and m_e is the electron mass. State clearly any approximations you have used. [7 marks] (b) The nucleus 58 Co is observed to decay by β^+ emission. Use the data on mass excesses in the table below to determine the kinetic energy released in this decay. List any other possible weak decays of 58 Co. Indicate, giving reasons, which of the isobars in the table could be absolutely stable and which might have a very long lifetime (> 10^{20} years). [6 marks] | Isobar | $\Delta \; ({ m MeV})$ | |-------------------------|------------------------| | $_{25}^{58}{ m Mn}$ | -55.83 | | $_{26}^{58} { m Fe}$ | -62.15 | | $_{27}^{58}\mathrm{Co}$ | -59.85 | | $_{28}^{58}{ m Ni}$ | -60.23 | | $_{29}^{58}{ m Cu}$ | -51.67 | (c) Shortly after C. S. Wu's experiment on β^- decay of 60 Co, another group studied β^+ decay of 58 Co in a magnetic field. They found that the positrons are more likely to be emitted along the direction of spins of the 58 Co nuclei. Explain why this observation shows that parity symmetry is violated in this decay. [6 marks] - (d) In contrast, the electrons from 60 Co are emitted more often in the opposite direction to the nuclear spins. Assuming that the light particles in the final states of both decays carry a total spin $S_z = +\hbar$ along the axis of the nuclear spin, use the properties of the weak interaction to explain the difference between the patterns seen in the decays of the two isotopes. [6 marks] - 4. (a) Describe briefly the charm quantum number C for hadrons. The Λ_c^+ baryon, the Σ_c^{++} baryon and the D^0 meson all have C=+1 and zero strangeness and bottomness. Identify the quark constituents and determine the value of I_3 for each of these hadrons. [8 marks] - (b) What is the isospin quantum number I for the Σ_c^{++} baryon? List any other members of the same isospin multiplet, giving their quark contents. [3 marks] - (c) For each of the following processes state whether it is allowed, and classify the ones that are allowed as strong, electromagnetic or weak. Here \overline{D}^0 denotes the antiparticle of the D^0 meson. i. $$p+p \to \Lambda_c^+ + \overline{D}^0 + p$$ ii. $$p + \overline{p} \rightarrow D^0 + \overline{D}^0$$ iii. $$\Lambda_c^+ \to n + \mu^+ + \nu_\mu$$ iv. $$\Lambda_c^+ \to \Sigma^+ + \pi^0$$ v. $$\Lambda_c^+ \to D^0 + e^+ + \gamma$$ [8 marks] (d) Draw quark-level diagrams for the decays $\Lambda_c^+ \to \Lambda^0 + \pi^+$ and $\Lambda_c^+ \to n + K^+$. Explain why you would expect one of these decays to occur at a much higher rate than the other. [6 marks] ## NUMERICAL AND BOTTOMLINE ANSWERS - 1. (a) No numerical answer - (b) No numerical answer - (c) $1.1 \times 10^{13} \text{ s}^{-1}$ - (d) $5 \times 10^{-19} \text{ s; EM}$ - (e) P = C = -1 - 2. (a) No numerical answer - (b) No numerical answer - (c) Ground state: $J^P=\frac{3}{2}^+$ Low-lying single-particle (hole) excitations: $J^P=\frac{1}{2}^+,\,\frac{5}{2}^+$ - (d) Possible states of $1d_{3/2}$ hole and $1f_{7/2}$ particle: $J^P=2^-,\ 3^-,\ 4^-,\ 5^-$ - 3. (a) No numerical answer - (b) $Q = 1.28 \text{ MeV for } \beta^+ \text{ to } ^{58}\text{Fe}$ Other decays of $^{58}\mathrm{Co}$: EC to $^{58}\mathrm{Fe},\,\beta^-$ to $^{58}\mathrm{Ni}$ Stable: ⁵⁸Fe Lifetime $\gtrsim 10^{20}$ years: $^{58}{\rm Ni}$ - (c) No numerical answer - (d) No numerical answer - 4. (a) Λ_c^+ : cud, $I_3 = 0$ $$\Sigma_c^{++}$$: cuu , $I_3 = +1$ $$D^0$$: $c\overline{u}$, $I_3 = -\frac{1}{2}$ - (b) I = 1; $cud(\Sigma_c^+)$, $cdd(\Sigma_c^0)$ - (c) (i) strong, (ii) strong, (iii) weak, (iv) weak, (v) forbidden in Standard Model - (d) No numerical answer