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These questions refer to Sections 3 (lecture 15) and 4 (lectures 16 to 18).

1. The lowest two states of an electron in a double quantum dot are described by the

2× 2 matrix Hamiltonian

Ĥ =
1

2

(
ε −∆
−∆ −ε

)
,

where ε is the difference in potential energies between the two dots, and ∆ the

coupling between them (arising from tunnelling). The basis vectors

L =

(
1
0

)
and R =

(
0
1

)
describe states where the electron is trapped on the left- and right-hand dot respec-

tively.

(a) Find the energy eigenvalues of this system.

(b) Explain why, if ∆� ε, the energy eigenvectors are well approximated by L and

R. Use first-order perturbation theory to show that their energies are ± ε/2 to

first order in ∆.

(c) Find the energy eigenvectors for the case ε = 0. Use these to construct a

general solution ψ(t) to the TDSE in this case.

(d) If the electron is initially located on the left-hand dot, ψ(0) = L, and ε = 0,

obtain the probability of finding it on the right-hand dot at a later time t.

2. The 3d (n = 3, l = 2) level in hydrogen is split by the spin-orbit interaction into two

levels with an energy difference of 4.5 × 10−6 eV. State the values of the quantum

number j for these levels, indicating which has the lower energy, and give their

degeneracies.

The spin-orbit interaction has the form

Ĥso = f(r)L̂ · Ŝ.

Use the observed splitting to determine the radial matrix element

Enl = 〈f(r)〉~2

for the 3d level. Show that the average energy of the set of 3d states is unchanged

by this interaction.
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3. The first excited levels of calcium have the outer electrons in a (4s)1 (4p)1 configura-

tion. Three of these are seen, with energies 1.87908 eV, 1.88555 eV and 1.89868 eV.

Assuming that they are split by the spin-orbit interaction,

Ĥso =
E
~2

L̂ · Ŝ,

deduce the angular-momentum quantum numbers (L, S and J) of these levels.

Compare the ratio of their splittings with the prediction of first-order perturbation

theory.

4. Sketch the energy-level diagram for the 3d states of hydrogen in a weak mag-

netic field, indicating the quantum numbers of the levels. Calculate the magnetic

splittings for a field of 10−2 T. [You may use the value for the Bohr magneton,

µB = e~/2me = 5.8× 10−5 eV/T.]

5. Find the Landé g-factors for the levels of calcium in question 3. Sketch a similar

diagram for the splittings of these levels in a weak magnetic field. Estimate the size

of the magnetic field for which the weak-field approximation breaks down.

6. The orbital motion of an electron in a thin cylindrical quantum dot is governed by

an electrostatic potential that is well approximated by a two-dimensional harmonic

oscillator. It can be described by the Hamiltonian

Ĥorb = − ~2

2m
∇2 +

1

2
k (x2 + y2),

where, for a thin enough dot, we may neglect any excitation in the z direction (see

Section 2.2 in lecture 6). Show that the energy eigenvalues of the electron have the

form

Eorb = (N + 1)~ω, where N = 0, 1, 2, . . . ,

and find the degeneracies of the first four levels.

After some heavy lifting with Hermite polynomials, it is possible to form linear

combinations of the states in a given level that have definite values for Lz. The

corresponding quantum number ml can be shown to run over even numbers from

−N to +N if N is even, and odd numbers from −N to +N if it is odd. Check that

the degeneracies that you found above are consistent with this pattern.

As in a real atom, the electrostatic potential leads to a (small) spin-orbit interac-

tion. If the dot is placed in a magnetic field B along its cylindrical axis, the full

Hamiltonian for the electron is

Ĥ = Ĥorb +
Eso
~2

L̂zŜz +
e

2m

(
L̂z + 2 Ŝz

)
B.

The states in the energy levels of the oscillator will be split by this depending on

their quantum numbers ml and ms. Sketch, as functions of B, the energies of the

states in the first two oscillator levels (N = 0 and 1).
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