PHYS 30101 APPLICATIONS OF QUANTUM PHYSICS EXAMPLES 4
These questions refer to Section 3 (lectures 11 to 14).

1. (a) Use the commutation rules for the angular momentum operators to show that

~

L,L =12-12+hL..

(b) A particle is in a state ¢;,,, with definite values for |L|? and L.. By writing
L, in terms of L, and L_, show that (L,) is zero for this state.

[If you are happy with Dirac notation, you can denote the state by |l m).]

2. Evaluate the products

oo03 and 0309,

where 0y 53 are the Pauli matrices. Hence find the commutator

[027 03]7

and show that this leads to the usual angular-momentum commutation relation for

the operators §y and §z.

3. (a) Find normalised eigenvectors vy, 3, of the operator §y = (h/2)o, for a particle
with spin-1/2.

(b) The state of a spin-1/2 particle is given by the normalised spinor

-5 (1)

Evaluate the expectation value of §y in this state.

(c) Write 7 as a linear combination of the spinors «,, 3, that you got in part (a).
[Hint: You may find the orthogonality of eigenvectors useful here.] Hence find
the probabilities of getting +//2 or —h/2 in a measurement of S,,. Check that

these are consistent with your result for part (b).

4. Calculate the energy splitting (in eV) between the two spin states of an electron in:
(a) the Earth’s magnetic field, B ~ 50 uT; (b) the field of the magnet that Andre
Geim (our Ignobel as well as Nobel prize winner) used to levitate a frog, B = 16 T}
(c) the field near the surface of a typical young pulsar, B ~ 10® T. Comment on
where in the electromagnetic spectrum, we might observe radiation from transitions
between the spin states in each of these cases. [You may find the value for the Bohr

magneton in atomic units useful: up = eh/2m, = 5.8 x 107° eV/T.]



5. An electron is in a magnetic field that lies in the xz plane,
B = B,i+ B.k.

Write down the Hamiltonian operator for the interaction of the electron’s intrinsic
magnetic moment with this field and express it in matrix form. Find its eigenvalues
and sketch these as a function of B.,, for fixed, nonzero B,. How would the picture

differ if B, were zero?

6. An electron sits in a magnetic field B that points in the +y direction. The Hamil-

tonian describing the interaction of its spin with the field is

 eB ~
A=223,

m

The spinor x(¢) describing the state of of the electron evolves according to the

time-dependent Schrodinger equation

(a) Using the spinors oy, 3, you found in question 3(a), write down two separable
solutions of this equation. Use these to construct a general time-dependent

solution.

(b) At time t = 0 the electron is in the state 7 introduced in question 2(b):
X(0) = . Find the state of the electron as a function of t.

(c) How does the probability of measuring S, = +//2 depend on time?

(d) How does the probability of getting S, = +h/2 depend on time?

7. Two electrons have total angular-momentum quantum numbers of j; = 3/2 and
ja = 5/2. List the allowed values of J and M, (the quantum numbers that give

the eigenvalues of the total angular momentum operators J2 = (J® + J@)2 and

jz = Y AZ(Q)). Check that the number of eigenstates of these operators agrees

)

with the total number of states of the two electrons with definite values of both JZ(1
and J12.



8. An electron has orbital and spin angular-momentum quantum numbers [ = 1 and
s = 1/2, respectively. The raising and lowering operators for the total angular
momentum are

Jo=L,+S8,, J =L_+5_,

= 01 = 00
S+:h(o o)’ S—:h(1 o)’

Acting on normalised angular-momentum eigenfunctions ¢, (r) with Ly gives

where

Ly¢p, = \/l(l+1>_m(m+1>h¢lm+1
Z*¢lm = \/l(l_'_l)_m(m_l)h(blm—l

(a) Start with the state with the largest possible value of m; = m; + m,

Vg0 (r) = ¢ 41(r)a

What do you get when you act on this state with j+? What does this tell you

about the quantum number j for this state?

(b) Act on ¢, with J_ to get a new state (which should take the form of a
superposition of ¢, and ¢, #). What are the quantum numbers j and m;
for this state?

(c) A second state 1)’ can be formed as a superposition of ¢, ,a and ¢, ; 3. It sat-
isfies J, 9" = 0. Without explicitly constructing this state, deduce its quantum

numbers j and m;.

(d) By acting repeatedly on each of these states with J_ we could form two “lad-
ders” of eigenstates of J2. How many states are there in each ladder? Are
there any other eigenstates of J2 that could be constructed out of states with
[=1and s =1/27



