
PHYS 30101 APPLICATIONS OF QUANTUM PHYSICS EXAMPLES 4

These questions refer to Section 3 (lectures 11 to 14).

1. (a) Use the commutation rules for the angular momentum operators to show that

L̂+L̂− = L̂2 − L̂2
z + ~L̂z.

(b) A particle is in a state φl m, with definite values for |L|2 and Lz. By writing

L̂x in terms of L̂+ and L̂−, show that 〈L̂x〉 is zero for this state.

[If you are happy with Dirac notation, you can denote the state by |l m〉.]

2. Evaluate the products

σ2 σ3 and σ3 σ2,

where σ1,2,3 are the Pauli matrices. Hence find the commutator

[σ2, σ3],

and show that this leads to the usual angular-momentum commutation relation for

the operators Ŝy and Ŝz.

3. (a) Find normalised eigenvectors αy, βy of the operator Ŝy = (~/2)σ2 for a particle

with spin-1/2.

(b) The state of a spin-1/2 particle is given by the normalised spinor

γ =
1√
5

(
i
2

)
.

Evaluate the expectation value of Ŝy in this state.

(c) Write γ as a linear combination of the spinors αy, βy that you got in part (a).

[Hint: You may find the orthogonality of eigenvectors useful here.] Hence find

the probabilities of getting +~/2 or −~/2 in a measurement of Sy. Check that

these are consistent with your result for part (b).

4. Calculate the energy splitting (in eV) between the two spin states of an electron in:

(a) the Earth’s magnetic field, B ' 50 µT; (b) the field of the magnet that Andre

Geim (our Ignobel as well as Nobel prize winner) used to levitate a frog, B = 16 T;

(c) the field near the surface of a typical young pulsar, B ' 108 T. Comment on

where in the electromagnetic spectrum, we might observe radiation from transitions

between the spin states in each of these cases. [You may find the value for the Bohr

magneton in atomic units useful: µB = e~/2me = 5.8× 10−5 eV/T.]
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5. An electron is in a magnetic field that lies in the xz plane,

B = Bxi +Bzk.

Write down the Hamiltonian operator for the interaction of the electron’s intrinsic

magnetic moment with this field and express it in matrix form. Find its eigenvalues

and sketch these as a function of Bz, for fixed, nonzero Bx. How would the picture

differ if Bx were zero?

6. An electron sits in a magnetic field B that points in the +y direction. The Hamil-

tonian describing the interaction of its spin with the field is

Ĥ =
eB

m
Ŝy.

The spinor χ(t) describing the state of of the electron evolves according to the

time-dependent Schrödinger equation

i~
∂χ

∂t
= Ĥχ.

(a) Using the spinors αy, βy you found in question 3(a), write down two separable

solutions of this equation. Use these to construct a general time-dependent

solution.

(b) At time t = 0 the electron is in the state γ introduced in question 2(b):

χ(0) = γ. Find the state of the electron as a function of t.

(c) How does the probability of measuring Sy = +~/2 depend on time?

(d) How does the probability of getting Sz = +~/2 depend on time?

7. Two electrons have total angular-momentum quantum numbers of j1 = 3/2 and

j2 = 5/2. List the allowed values of J and MJ (the quantum numbers that give

the eigenvalues of the total angular momentum operators Ĵ2 = (Ĵ(1) + Ĵ(2))2 and

Ĵz = Ĵ
(1)
z + Ĵ

(2)
z ). Check that the number of eigenstates of these operators agrees

with the total number of states of the two electrons with definite values of both J
(1)
z

and J
(2)
z .
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8. An electron has orbital and spin angular-momentum quantum numbers l = 1 and

s = 1/2, respectively. The raising and lowering operators for the total angular

momentum are

Ĵ+ = L̂+ + Ŝ+, Ĵ− = L̂− + Ŝ−,

where

Ŝ+ = ~
(

0 1
0 0

)
, Ŝ− = ~

(
0 0
1 0

)
,

Acting on normalised angular-momentum eigenfunctions φl m(r) with L̂± gives

L̂+ φl m =
√
l(l + 1)−m(m+ 1) ~φl m+1

L̂− φl m =
√
l(l + 1)−m(m− 1) ~φl m−1.

(a) Start with the state with the largest possible value of mj = ml +ms,

ψ+3/2(r) = φ1+1(r)α.

What do you get when you act on this state with Ĵ+? What does this tell you

about the quantum number j for this state?

(b) Act on ψ+3/2 with Ĵ− to get a new state (which should take the form of a

superposition of φ1 0 α and φ1+1 β). What are the quantum numbers j and mj

for this state?

(c) A second state ψ′ can be formed as a superposition of φ1 0 α and φ1+1 β. It sat-

isfies Ĵ+ψ
′ = 0. Without explicitly constructing this state, deduce its quantum

numbers j and mj.

(d) By acting repeatedly on each of these states with Ĵ− we could form two “lad-

ders” of eigenstates of Ĵ2. How many states are there in each ladder? Are

there any other eigenstates of Ĵ2 that could be constructed out of states with

l = 1 and s = 1/2?
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