
PHYS 30101 APPLICATIONS OF QUANTUM PHYSICS EXAMPLES 2

Questions 1–3 refer to Section 1 Tunnelling (lectures 2–4).

Questions 4–5 refer to Section 2 Trapped particles (lectures 5 and 6).

1. What is the tunnelling factor for an electron to get through a square barrier of width

1.6 nm, if the energy of the electron is 1 eV below the top of the barrier?

2. Cold emission occurs when electrons tunnel out from the surface of a conductor that

has a very strong electric field outside it.1 Near the surface, the potential energy of

an electron has the form

V (x) =

{
W − eEx for x > 0

−V0 for x < 0
.

This is shown in the figure. Here W is the work function (the minimum energy

needed to remove an electron from the conductor, as in the photoelectric effect) and

E is the electric field outside the metal.
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[The shaded region shows the “Fermi sea” of levels occupied by electrons inside the

metal. Here we only need to consider states at the top of the sea, which have the

shortest distance to tunnel through.]

Show that the tunnelling factor for an electron with zero energy is

T = exp

[
− 4
√

2m

3~eE
W 3/2

]
.

[Hints: first find the limits of the classically forbidden zone. Then, to do the integral,

you may find it helpful to change variables to y = W − eEx).]

The work function for a typical metal is 4 eV. Evaluate the tunneling factor for an

electric field of 3×109 V/m. How would this change if the surface were coated with

caesium, which has a work function of about 2 eV?

1This is used in the backlights for LCD displays in computer monitors or TVs, and in some low-energy
lightbulbs. It is also how data on your memory stick is erased: when an electric field is applied electrons
tunnel across a thin insulating layer out of the memory cells. The fields near nanometer-sized surface
irregularities or across a 10 nm insulating layer can be huge, ∼ 109 V/m.
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3. In lectures we looked at resonant tunnelling through a pair of square barriers. We

saw that if the energy exactly matched that of a resonance, there was perfect con-

structive interference between all the waves reflected between the walls and 100% of

the incoming wave is transmitted through the pair of barriers (just like the situation

at a bright fringe of an etalon).

Without doing any detailed calculations, describe the forms of the wave functions

in the regions to the left of the barriers, between the barriers, and to the right of

both barriers, for an incoming wave from the left

(a) at an energy that is only slightly different from one of the resonant energies,

(b) at an energy that lies in-between two resonances.

[Assume that the barriers are wide and the energies are well below the top of the

barriers.]

4. An electron is trapped inside a sphere of radius R by a potential that we can treat

as infinite for r > R. Inside the sphere, the electron experiences no potential and

so its Hamiltonian is

Ĥ = − ~2

2m∗ ∇
2.

In spherical polar coordinates (r, θ, φ), we can express ∇2 in the form

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

L̂2

r2
,

where L̂2 is the square of the angular momentum operator.

(a) Show that the spherically symmetric wave function

ψ(r) =
u(r)

r

can be a solution of the TISE provided u(r) satisfies

d2u

dr2
= −k2 u(r), where k2 =

2m∗E

~2
.

(b) State the boundary conditions on u(r), explaining how they relate to the condi-

tions on ψ(r). Hence show the energy eigenvalues for the spherically symmetric

states of an electron in this sphere are

En =
~2

2m∗

(nπ
R

)2

, where n = 1, 2, 3, . . . .

(c) Electrons in solid ZnS have an effective mass m∗ = 0.2me. Calculate the

energies of the lowest three spherical states of an electron in a ZnS sphere of

radius 2 nm. Where in the spectrum would you expect to see radiation from

transitions between these states?
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5. A simple model for a nucleus (the “shell model”) consists of protons and neutrons

moving in a three-dimensional harmonic-oscillator potential,

V (x, y, z) =
1

2
k (x2 + y2 + z2).

Use the fact that the Hamiltonian can be separated in Cartesian coordinates to write

down the energy eigenvalues of a nucleon (a proton or a neutron) in this potential.

Find also the degeneracies of the first three levels.

Nucleons are spin-1/2 particles, like electrons. Find the “magic numbers” that

correspond to nuclei with closed shells of either protons or neutrons. Use these

to explain why the nuclei 4He, 16O and 40Ca are commonly found on Earth and

elsewhere in the Universe.

The rest energy of a nucleon is approximately Mc2 = 940 MeV. In a typical nucleus,

the energy needed to excite a nucleon from one shell to the next is ~ω = 10 MeV.

Find, in fm, the corresponding oscillator length parameter,

b =

√
~
Mω

.

Comment on the size of your result. [Hint: you may find it helpful to use the fact

that ~c = 200 MeV fm in units appropriate to nuclear physics.]
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