Lecture 9

Perturbation theory Full Hamiltonian

$$\widehat{H} = \widehat{H}_0 + \widehat{H}_1$$

- \widehat{H}_0 simple, known eigenstates: $\widehat{H}_0 |\phi_n\rangle = E_n^{(0)} |\phi_n\rangle$
- \widehat{H}_1 : small "perturbation"
- To first order in \widehat{H}_1
 - eigenvalues of \widehat{H} shifted by expectation value of \widehat{H}_1

$$E_n \simeq E_n^{(0)} + \langle \widehat{H}_1 \rangle$$

where

$$\langle \widehat{H}_1 \rangle = \langle \phi_n | \widehat{H}_1 | \phi_n \rangle \left(= \int \phi_n^*(\mathbf{r}) \widehat{H}_1 \phi_n(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} \right)$$

- but be careful if \widehat{H}_0 has degenerate eigenvalues
- \rightarrow need to find states not mixed by \widehat{H}_1 first

・ロト・西ト・モト・モト モ