Lecture 18

Quantum dot in a magnetic field

Short length of carbon nanotube

• small spin-orbit coupling with opposite sign to real atoms

$$\widehat{\mathcal{H}}_{ ext{mag}} = -rac{\mathcal{E}_{ ext{so}}}{\hbar^2} \widehat{\mathcal{L}}_z \, \widehat{\mathcal{S}}_z + rac{e}{2m} \left(g_l \, \widehat{\mathcal{L}}_z + g_s \, \widehat{\mathcal{S}}_z
ight) \mathcal{B}_z$$

States with definite $L_z = m_l \hbar$ and $S_z = m_s \hbar$: energy eigenvalues

$$E_{m_l m_s} = -\mathcal{E}_{\rm so} \, m_l \, m_s + \frac{e\hbar}{2m} \, (g_l \, m_l + g_s \, m_s) B$$

Four degenerate states split into pairs by spin-orbit coupling
pair with same signs for *m_l*, *m_s* has lower energy
Pairs then split by interaction with external field *B*states with same signs for *m_l*, *m_s* have stronger dependence on *B*

Experiment shows this pattern with

$$egin{array}{rcl} \Delta E_{
m so} &= |m_l|\, {\cal E}_{
m so} &\simeq 0.4 imes 10^{-3} \ {
m eV} \ g_s &\simeq 2 & {
m as in free space} \ g_l \, |m_l| &\simeq 26 \end{array}$$

• large $g_l |m_l|$ from "relativistic" behaviour of electrons in graphene