Lecture 16

Manipulating spins

TDSE for electron spin in a constant magnetic field $\mathbf{B}_0 = (0, 0, B_0)$ and a rotating field $\mathbf{B}_1 = (B_1 \cos \omega t, B_1 \sin \omega t, 0)$

$$i\frac{d}{dt}\begin{pmatrix}c_1\\c_2\end{pmatrix} = \frac{eg\hbar}{4m}\begin{pmatrix}B_0&B_1e^{-i\omega t}\\B_1e^{i\omega t}&-B_0\end{pmatrix}\begin{pmatrix}c_1\\c_2\end{pmatrix}$$

does not separate

Use fact that for $B_1=0$ spin precesses around z axis at rate $2\omega_0$ where $\omega_0=egB_0/4m$

Write $c_1(t) = a_1(t)e^{-i\omega_0 t}$, $c_2(t) = a_2(t)e^{i\omega_0 t}$ where $a_{1,2}(t)$ describe additional time dependence produced by B_1

TDSE becomes

$$i\frac{d}{dt}\begin{pmatrix}a_1\\a_2\end{pmatrix} = \frac{eg\hbar}{4m}\begin{pmatrix}0&B_1e^{i(2\omega_0-\omega)t}\\B_1e^{-i(2\omega_0-\omega)t}&0\end{pmatrix}\begin{pmatrix}a_1\\a_2\end{pmatrix}$$

Resonance condition: $\omega = 2\omega_0$

- field B₁ rotates at same rate as spin
- looks like constant field along rotating x' axis
- \rightarrow spin precesses around x' axis at rate $2\omega_1$ where $\omega_1 = egB_1/4m$ (electron oscillates between spin-up and spin-down)