Lecture 14

Addition of angular momenta: for example $\hat{J} = \hat{L} + \hat{S}$ Eigenvalues of \hat{J}^2 are $|J|^2 = J(J+1)\hbar^2$ where

$$J = L + S, L + S - 1, \ldots, |L - S|$$

Eigenvalues of \hat{J}_z are $J_z = M_J \hbar$ where $M_J = +J, J-1, ..., -J$

States with definite J, M_J are linear superpositions of ones with definite M_L , $M_S \rightarrow$ total numbers of states must match:

$$\sum_{J=|L-S|}^{L+S} (2J+1) = (2L+1)(2S+1)$$

[To construct states: start from one with $M_L = L$, $M_S = S$; hit it repeatedly with \hat{J}_- to build ladder with J = L + S; use orthogonality to get second state with $M_J = L + S - 1$ and start a second ladder with it; repeat until independent states (and you) are exhausted]