Lecture 10

Quantum wire (particle trapped in 2D, free in third) Energy eigenvalues

$$E=\frac{\hbar^2 k_z^2}{2m^*}+E_m$$

E_m: energy eigenvalues of (trapped) transverse motion

Density of states in energy, for electrons in transverse state m

$$\frac{\mathrm{d}n}{\mathrm{d}E} \ \left[\text{or } g(E) \right] = \frac{L}{\pi} \left(\frac{2m^*}{\hbar^2} \right)^{1/2} \frac{1}{\sqrt{E - E_m}} \qquad \text{for } E > E_m$$

Spikes at each $E_m \rightarrow$ peaks in electrical conductance (unlike bulk conductor: smooth density of states $\propto \sqrt{E}$)

Cylindrical wire: periodic wave functions $\rightarrow m$ integer

$$E_m = \frac{\hbar^2 m^2}{2m^* R^2}$$

イロト イ団ト イヨト イヨト 二日

Graphene

Single-atom-thick sheet of carbon in hexagonal pattern Effective mass of electron $m^* = 0$

 \rightarrow relativistic form for energies

$$E = v_F \hbar |\mathbf{k}|$$
 (like $E = c |\mathbf{p}|$)

but with Fermi velocity

$$v_F \simeq 10^6 \, {
m ms}^{-1} = rac{1}{300} \, c \, {
m instead} \, {
m of} \, c$$

Carbon nanotube

Cylinder of graphene, radius \sim 1–2 nm Energy eigenvalues of transverse motion

$$E_m = v_F \hbar \frac{|m|}{R}$$
 with *m* integer (periodic waves)

Full energies: $E = v_F \hbar |\mathbf{k}| = \sqrt{v_F^2 \hbar^2 k_z^2 + E_m^2}$ Density of states has spikes at equally spaced energies E_m