PHYS 20171 MATHEMATICS OF WAVES AND FIELDS

Lecturer: Mike Birse
Room: Schuster Building 7.23 (Theoretical Physics Group)
Email: mike.birse@manchester.ac.uk

Phone: 0161-275-4206

The aim of this course is to develop some of techniques needed to solve linear partial
differential equations (PDE’s). These equations appear in many areas of physics and
describe waves and fields which can vary in one or more space dimensions and in time.
They include:

e Laplace’s equation
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The field ¢(r) could be, for example, the electrostatic potential in a region of space

without electric charge, or the steady-state distribution of temperature inside some
body.
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e The ordinary (or nondispersive) wave equation
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This describes waves with a constant speed c¢. These could be sound waves, if ¢(r, t)
is the displacement of a vibrating string or membrane or medium. They could also
be electromagnetic waves, such as light or radio, if ¢(r,t) is one of the components
of the electric field.

e The Schrodinger equation
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This is the central equation of quantum mechanics. It describes the quantum me-
chanical wave for a particle of mass m moving in a potential V(r). The wave
function ¢ (r,t) gives the probability amplitude for finding the particle at the point

r at time ¢.

e The heat-flow (or diffusion) equation
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This describes the flow of heat inside a body with no internal source of heat; the
field ¢(r,t) is the (time-dependent) temperature distribution inside the body.



There are three important mathematical tools which we shall be using to tackle this
kind of equation. The first of these is separation of variables. Provided the boundary
conditions on our PDE are simple enough, we can find special solutions that can be
written as products of functions of one variable, for example: ¢(z,y,2) = X (2)Y (y)Z(2).

The separated functions, like X (z), Y (y) and Z(z), satisfy ordinary differential equa-
tions (ODE’s) which contain unknown constants. These can be solved only for special
values of the constants, known as eigenvalues. The corresponding solutions are called
eigenfunctions. Physically these correspond to the normal modes of an oscillating system.

Finally we use these eigenfunctions as basis functions to build a general solution to the
PDE as a linear superposition of the separable ones. The resulting series contains an
infinite number of constants which need to be determined from the initial conditions.

The amount of each basis function needed can be found from a straightforward integral,
provided the set of basis functions has a property known as orthogonality. An example is
the Fourier series, where we add sines and cosines to form a general wave. For waves that
can spead out to infinity the series becomes an integral, known as a Fourier transform.

We shall also meet other important eigenvalue problems (ODE’s with boundary condi-
tions) in the context of waves and fields in two or three dimensions. All of these lead
to sets of orthogonal basis functions. They include: Bessel functions, spherical Bessel
functions and Legendre polynomials. You will meet these again (and others like them) in
quantum mechanics and in studying electromagnetic waves.

Having separated variables and found the set of eigenfunctions for our problem, we build
a general solution out of the separable ones. The coefficient of each separable solution
can then be determined from the initial conditions on our physical problem.

Recommended book

The recommended book for this course is:
e M. L. Boas, Mathematical methods in the physical sciences, 3rd edn., (Wiley, 2006).

The relevant material is contained in: Chapter 7, Sections 5, 10 and 11 of Chapter 8,
Chapter 12, and Chapter 13. You are strongly advised to get hold of a copy of this book
since it will provide the necessary mathematical backup for your physics courses over the
next two or three years (except for the most abstruse theoretical options). You may find
quite a few second-hand copies of the older (2nd) edition of this book. It covers all the
same material, but note that the material on Fourier transforms is organised differently.
The course outline below indicates the equivalent sections of the 2nd edition, where these

differ.

A good alternative (which some people prefer) is: K. F. Riley, M. P. Hobson and S. J.
Bence, Mathematical Methods for Physics and Engineering (Cambridge, 1997), Chapters
10, 11, 13.1, 14, 15, 16 and 17. Take a look at it if you don’t get on with Boas. Another
useful book, on applications of these ideas to PDE’s, is: G. Stephenson, Partial differential
equations for scientists and engineers (Imperial College, 1996).



Examples sheets

I know you’ve heard this before, but the only way to become familiar with mathematical
techniques is to use them. The questions on the examples sheets for tutorials will give
you some practice. You should also make use of the large sets of practice problems at
the end of each section of Boas’s book. (The book also contains lots of helpful worked
examples.)

Webpage

I have collected links to a number of relevant sites on a webpage for this course:
http://theory.ph.man.ac.uk/~mikeb/lecture/pc217/index.html

Please let me know of any other sites which you find useful.

Course outline

References to book chapters or sections, as follows:

B3 Boas, 3rd edition
B2 Boas, 2nd edition
R+ Riley, Hobson and Bence

Examples of partial differential equations in physics
B3 and B2 13.1; R+ 16.1

0. Ordinary differential equations (~ 1 lecture)

B3 and B2 8.5, 2.9, 2.11, 2.12; R+ 13.1
First-order, linear
Second-order, linear

Complex exponentials

1. Wave problems in one dimension (~ 2 lectures)

B3 and B2 13.2 (separation of variables), 13.4; R+ 16.1.1, 17.1, 17.2
Separation of variables
Normal modes of a string: eigenfunctions and eigenvalues

General motion of a string
2. Fourier series (~ 4 lectures)

B3 and B2 7.1-7.11; R+ 10

Orthogonality and completeness of sines and cosines
Fourier coeflicients

Complex exponential form of Fourier series

Initial conditions on PDE’s



3. Other PDE’s (~ 2 lectures)

B3 and B2 13.2, 13.3; R+ 16.1.2, 16.1.3, 17.2
Laplace’s equation

The heat-flow equation
4. Integral transforms (~ 3 lectures)

B3 7.12,8.10, 8.11; B2 15.4, 15.5, 15.7; R+ 11.1
Fourier transform
Convolutions
Wave packets and dispersion
5. Series solution of ODE’s (~ 4 lectures)
B3 and B2 1.6C, 1.10, 1.12, 12.2, 12.6, 12.7-12.9, 12.11, 12.12;
R+ 3.3, 3.6, 14.2, 14.3, 14.6, 14.7
Taylor series
Legendre polynomials and related functions
Bessel functions
Orthogonal sets of eigenfunctions

Legendre series
6. Problems in two and three dimensions (~ 6 lectures)

B3 and B2 13.5-13.7; R+ 17.3

Normal modes of a square membrane; degeneracy
Wave guide

Normal modes of a circular and spherical systems

Heat flow and Laplace’s equation in circular and spherical systems

Mike Birse (September 2007)



