next up previous
Next: Hint 2 Up: Examples 4 Previous: Question *9

  
Hint 1

(a) Each mass is moving with speed

\begin{displaymath}v=\vert\hbox{{\boldmath $\omega$}}\times {\bf x}\vert=l\omega\sin\theta\end{displaymath}

around the axis of rotation. Each has an angular momentum of magnitude

\begin{displaymath}L=m\vert{\bf x}\times{\bf v}\vert=ml^2\omega\sin\theta\end{displaymath}

pointing in a direction perpendicular to the rod in the same plane as ${\bf x}$ and $\hbox{{\boldmath$\omega$ }}$. Hence the total angular momentum is $L=2ml^2\omega\sin\theta$. It lies at an angle of ${\pi\over 2}-\theta$ to the axis of rotation.

(b) The torque needed to maintain this rotation has magnitude

\begin{displaymath}\tau=\left\vert{d{\bf L}\over dt}\right\vert=\vert\omega\time...
...\sin
({\textstyle{\pi\over 2}}-\theta)=ml^2\omega^2\sin2\theta.\end{displaymath}

What is its direction?



Mike Birse
2000-03-31