next up previous
Next: Hint 2 Up: Examples 3 Previous: Question 11

  
Hint 1

Use conservation of energy,

\begin{displaymath}{1\over 2}m\dot r^2-{GMm\over r}=-{GMm\over D},\end{displaymath}

to get a first-order differential equation for $r$. Integrating this, you should find that the time taken is

\begin{displaymath}T={1\over\sqrt{2GM}}\int_{D/2}^D\left({1\over r}-{1\over D}
\right)^{-1/2}dr.\end{displaymath}

The integral can be done by changing variable, with $r=D\cos^2 u$, and gives

\begin{displaymath}T=\sqrt{{2D^3\over GM}}\,{\pi+2\over 8}.\end{displaymath}



Mike Birse
2000-03-31