
Object-Oriented Programming in C++
Pre-Lecture 6: Copy and move

Prof Niels Walet (Niels.Walet@manchester.ac.uk)

Room 7.07, Schuster Building

Version: February 24, 2020

Prelecture 6
Outline

In today’s lecture: focus on how to replicate objects, covering
I The assignment operator
I The copy constructor
I Deep and shallow copying
I The this pointer

Two advanced aspects:
I lvalues and rvalues (simplified!)
I move semantics

�

�
	A basic example

Class example
This week’s example: a simple class for dynamic (1D) arrays

4 #include<iostream>
5 class dynamic_array
6 {
7 private:
8 size_t size {};
9 double *array {nullptr};
10 public:
11 dynamic_array()
12 {std::cout<<"Default constructor called"<<std::endl;}
13 dynamic_array(size_t s);
14 ~dynamic_array(){delete array; std::cout<<"Destructor called"<<std::endl;}
15 size_t length() const {return size;}
16 double & operator[](size_t i);
17 };
18 // Parameterized constructor implementation
19 dynamic_array::dynamic_array(size_t s)
20 {
21 std::cout<<"Parameterized constructor called"<<std::endl;
22 if(s<1)
23 {
24 std::cout<<"Error: trying to declare an array with size < 1"<<std::endl;
25 throw("size not positive");
26 }
27 size = s;
28 array = new double[size];
29 for(size_t i{}; i<size; i++) array[i]=0;
30 }

Class example
This week’s example: a simple class for dynamic (1D) arrays ct’d

32 // Overloaded element [] operator implementation
33 double & dynamic_array::operator[](size_t i)
34 {
35 if(i<0 || i>=size)
36 {
37 std::cout<<"Error: trying to access array element out of bounds"<<std::endl;
38 throw("Out of Bounds error");
39 }
40 return array[i];
41 }
42 int main()
43 {
44 std::cout<<"Declaring array a1 with parameterized constructor"<<std::endl;
45 dynamic_array a1{2};
46 std::cout<<"Length of a1 = "<<a1.length()<<std::endl;
47 a1[0] = 0.5;
48 a1[1] = 1.0;
49 std::cout<<"a1[0] = "<<a1[0]<<std::endl;
50 std::cout<<"a1[1] = "<<a1[1]<<std::endl;
51 std::cout<<std::endl;
52 return 0;
53 }

Listing 1 : selection of PL6/dynarr.cpp

./codes/PL6/dynarr.cpp

Class example
Diversion: operator[]

We have overloaded the subscript operator double & operator[](int i); which
allowed us to write

a1[1] = 1.0;

I In line with standard C arrays - use square brackets when referring to an individual
element (subscripting).

I Can also overload operator()- has advantage that it generalises to more than one
parameter, e.g. multi-dimensional arrays, my3dArray(0,0,0).

I Note that we use return by reference so that we can write a1[0] = 0.5;: The LHS
returns a reference to the value of the first element in a1 which can then be set to a
different value!

I Closely linked to the idea of lvalues and rvalues, see below!

�

�
	Replication: assignment

Replicating objects:

Now let’s declare a 2nd object a2 . We can then copy its values from a1 by assignment

39 int main()
40 {
41 std::cout<<"Declaring array a1 with parameterized constructor"<<std::endl;
42 dynamic_array a1{2};
43 std::cout<<"Length of a1 = "<<a1.length()<<std::endl;
44 a1[0] = 0.5;
45 a1[1] = 1.0;
46 std::cout<<"a1[0] = "<<a1[0]<<std::endl;
47 std::cout<<"a1[1] = "<<a1[1]<<std::endl;
48 std::cout<<std::endl;
49 std::cout<<"Declaring array a2 with default constructor"<<std::endl;
50 dynamic_array a2;
51 std::cout<<"Length of a2 = "<<a2.length()<<std::endl;
52 std::cout<<"Now copy values from a1 by assignment"<<std::endl;
53 a2=a1;
54 std::cout<<"Length of a2 = "<<a2.length()<<std::endl;
55 std::cout<<"a2[0] = "<<a2[0]<<std::endl;
56 std::cout<<"a2[1] = "<<a2[1]<<std::endl;
57 std::cout<<std::endl;
58 return 0;
59 }

Listing 2 : selection of PL6/assignment.cpp

./codes/PL6/assignment.cpp

Replicating objects:

The code now outputs

Declaring array a1 with parameterized constructor
Parameterized constructor called
Length of a1 = 2
a1[0] = 0.5
a1[1] = 1

Declaring array a2 with default constructor
Default constructor called
Length of a2 = 0
Now copy values from a1 by assignment
Length of a2 = 2
a2[0] = 0.5
a2[1] = 1

Destructor called
Destructor called

Replicating objects:
assignment operator

ANALYSIS:
I The statement a2=a1 copies the member data of a1 to a2 so they both have the same

length and values after the operation.
I Since a2 is already instantiated, this is known as an assignment operation.
I Handled by the assignment operator =.
I If not provided by the class, the compiler creates a default function operator= that

overloads this operator for any class.
I We will see there are good reasons why we usually want to do this ourselves.

�

�
	Replication: shallow copy

Replicating objects:
I We can also copy the values while creating new objects (using initialisation)
I Remember, there are two ways to do this (as with simple data types like int and
double)

add the following (using a3 and a4):

56 a2=a1;
57 std::cout<<"Length of a2 = "<<a2.length()<<std::endl;
58 std::cout<<"a2[0] = "<<a2[0]<<std::endl;
59 std::cout<<"a2[1] = "<<a2[1]<<std::endl;
60 std::cout<<std::endl;
61 std::cout<<"Declare array a3 and initialize"<<std::endl←↩

;
62 dynamic_array a3=a1;
63 std::cout<<"Length of a3 = "<<a3.length()<<std::endl;
64 std::cout<<"a3[0] = "<<a3[0]<<std::endl;
65 std::cout<<"a3[1] = "<<a3[1]<<std::endl;
66 std::cout<<std::endl;
67 std::cout<<"Using other C++ way to declare and ←↩

initialize"<<std::endl;
68 dynamic_array a4{a1};
69 std::cout<<"Length of a4 = "<<a4.length()<<std::endl;
70 std::cout<<"a4[0] = "<<a4[0]<<std::endl;
71 std::cout<<"a4[1] = "<<a4[1]<<std::endl;
72 std::cout<<std::endl;
73 return 0;
74 }

Listing 3 : selection of PL6/initialise.cpp

Declaring array a1 with parameterized ←↩
constructor

Parameterized constructor called
Length of a1 = 2
a1[0] = 0.5
a1[1] = 1

Declaring array a2 with default constructor
Default constructor called
Length of a2 = 0
Now copy values from a1 by assignment
Length of a2 = 2
a2[0] = 0.5
a2[1] = 1

Declare array a3 and initialize
Length of a3 = 2
a3[0] = 0.5
a3[1] = 1

Using other C++ way to declare and initialize
Length of a4 = 2
a4[0] = 0.5
a4[1] = 1

Destructor called
Destructor called
Destructor called
Destructor called

./codes/PL6/initialise.cpp

Replicating objects:
copy constructor

I The result may seem surprising: the objects a3 and a4 did not need one of our
constructors!

I Instead they invoked the default copy constructor.
I This performs a bitwise (or like-for-like) copy of the data from one object to another.
I Also known as a shallow copy (since it copies addresses, rather than the data being

pointed to!).
I There are three main situations when the copy constructor is used:

I When declaring a new object as a copy of an old object (as above).
I When passing an object to a function by value (need to make local copy of object in function).
I When creating a temporary object (e.g. in a return statement when returning by value).

Replicating objects:
problems with shallow copying

I The above examples (using the default assignment operator and copy constructor) are
fine if the objects are simple and we want to create like-for-like copies by value.

I What happens if we do the following?

a1[1] = -2.5;
std::cout<<"a1[1] = "<<a1[1]<<std::endl;
std::cout<<"a2[1] = "<<a2[1]<<std::endl;
std::cout<<"a3[1] = "<<a3[1]<<std::endl;
std::cout<<"a4[1] = "<<a4[1]<<std::endl;
return 0;

Replicating objects:
problems with shallow copying

I You may (or may not!) be surprised that all first entries (a1[1], a2[1], a3[1], and
a4[1]) equal -2.5!

I Thus all 4 objects are modified...
I When an object’s member data contains a pointer, the address is copied by the default

assignment operator and copy constructor, not the data it points to.
I That is why it is called a shallow copy.
I So all shallowly copied objects contain a pointer to the same data.
I This can cause serious problems!

Replicating objects:
problems with shallow copying

I Currently our constructor assigns memory that never gets deleted!
I It is very good practice to delete array in destructor.
I If we modify the code as follows

~dynarr(){cout<<"Destructor called"<<endl; delete[] array;}

I we get lots in runtime errors!
I a4 is destroyed first - the destructor is called and the array is deleted.
I When the destructor for a3 is called, there is no array left to delete!
I Rule: for all but the simplest classes (no pointers/dynamic memory), it is much better to

write our own functions to overload the assignment operator and copy constructor.
I We can control how dynamic arrays are copied - either just the pointer or copy the

whole array...
I Latter style is known as deep copying.

�

�
	Replication: deep copy

Replicating objects:
writing our own rules

I Copy constructor: similar to ordinary constructor but with class type as sole parameter

20 // Copy constructor for deep copying
21 dynamic_array::dynamic_array(dynamic_array &arr)
22 {
23 // Copy size and declare new array
24 array=nullptr; size=arr.length();
25 if(size>0)
26 {
27 array=new double[size];
28 // Copy values into new array
29 for(size_t i{};i<size;i++) array[i] = arr[i];
30 }
31 }

Listing 4 : selection of PL6/deep.cpp

I Used when a new object is declared as a copy of an existing object
dynarr a3=a1; dynarr a4{a1};.

./codes/PL6/deep.cpp

Replicating objects:
writing our own rules

I Assignment operator - similar to copy constructor except that we assume the object is
already constructed!

I We must therefore delete existing data first before copying

32 // Assignment operator for deep copying
33 dynamic_array & dynamic_array::operator=(dynamic_array &arr)
34 {
35 if(&arr == this) return *this; // no self assignment
36 // First delete this object’s array
37 delete[] array; array=nullptr; size=0;
38 // Now copy size and declare new array
39 size=arr.length();
40 if(size>0)
41 {
42 array=new double[size];
43 // Copy values into new array
44 for(size_t i{};i<size;i++) array[i] = arr[i];
45 }
46 return *this; // Special pointer!!!
47 }

Listing 5 : selection of PL6/deep.cpp

I Used when an existing object is assigned to another dynarr a2; a2=a1;.

./codes/PL6/deep.cpp

Replicating objects:
writing our own rules

I This is now used in the code PL6/deep.cpp; the statements

107 a1[1] = -2.5;
108 std::cout<<"a1[1] = "<<a1[1]<<std::endl;
109 std::cout<<"a2[1] = "<<a2[1]<<std::endl;
110 std::cout<<"a3[1] = "<<a3[1]<<std::endl;
111 std::cout<<"a4[1] = "<<a4[1]<<std::endl;

now give the output

a1[1] = -2.5
a2[1] = 1
a3[1] = 1
a4[1] = 1

I Each object now has its own memory and copies of the data (as we performed deep
copies)

./codes/PL6/deep.cpp

Replicating objects:
this pointer this

I The assignment operator returns a reference to the basic type, dynarr&
I This is usually true for operators, so one can do things like

a=b=c; // same as a=(b=c) so b=c must have same type as a

I For the operation b=c the object returned is the identical to the object calling the
function (contrast this with the operation b+c where b calls function and b+c is returned)

I For this purpose, all member functions have access to a special pointer called this
which points to object itself!

I Example: we can access member data in a different way
int length() const return this->size;.

I Better use: return *this when we just want to return back the object calling the
function.

Replicating objects:
this pointer this

I Another example of using the this pointer:
I When we are overloading operator=, we need to protect against possible

self-assignment. Trivial dangerous example in our code: a2=a2
I In this case, our code would crash since it could delete the object’s data (and allocated

memory) before trying to copy itself!
I Simplest way to avoid that was to write

dynamic_array & dynamic_array::operator=(dynamic_array &arr←↩
)

{
if(&arr == this) return *this; // no self assignment
// First delete this object’s array

I Here, the code simply compares the address of the object (this) and the address of
the argument arr to check if they are the same.

Replicating objects:
a word of caution

I When defining a function to overload the assignment operator, we returned the object
by reference

myclass & myclass::operator=(myobject){... return *this;}

I Why? When returning an object by value a copy is made and returned; the original
object is then destroyed!

I Shallow-copied objects may then point to data that no longer exists.
I Returning by reference avoids this when a (deep) copy constructor is not defined.
I Even when it is, returning by reference is faster (but only works for objects that do not

go out of scope).

�
�

�

Summary, part 1

Prelecture 6
Summary, part 1

In the first part of today’s lecture: we looked at how and when to replicate objects, covering
I The assignment operator
I The copy constructor
I Deep and shallow copying
I The this pointer

�

�
	Part2: advanced aspects

�

�
	Lvalues and Rvalues

Lvalues and Rvalues
Normal and temporary variables

I If you ever read any advanced material on C++ (e.g., the C++ specification) a lot of time
is spent on discussing rvalues and lvalues;

I Actually the discussion here is substantially simplified!
I An lvalue is originally a variable that can appear on the left-hand side of an expression,

and an rvalue one that can only occur on the right-hand side
I More specifically, and lvalue is something where we can take the address, something in

(semi)permanent memory. They don’t have to be variables, e.g., a[i]=10 or more
complicated functions are allowed (as long as we have a referable object at the left).

I An rvalue, on the other hand refers to a temporary object; in order to capture these in
permanent memory, the only way is to copy them into an lvalue.

I That can be quite inefficient!

Lvalues and Rvalues
lvalue and rvalue references

I Like we said we know the address of an lvalue, so we can write lvalue&; C++11
introduces the idea of an rvalue reference as well, rvalue&& (note the double
ampersand!)

I Why? What is this useful for? It allows us to write functions that specifically deal with
“mutable” temporary variables. Consider the following two statements

print_reference (const String& str) {cout << str; }
print_reference (String&& str) {cout << str; }

The first one accept any constant lvalue–it actually accepts any argument it is given,
lvalue or rvalue. The second overload actually picks up a mutable rvalue (no const,
&&), so the general function is left with the remainder,

I So we now have a way to differentiate a mutable rvalue (temporary) from all the other
forms of a variable, and we can act on that. But why is that useful? The answer is ...

�

�
	Move semantics

Move semantics
Move constructor and move assignment

I The most common way of using rvalue references is in the “move constructor” and
“move assignment”. In many senses these parallel the copy constructors discussed
before.

I These are specified in almost the same way, but they take an rvalue reference
I Their implementation is very different
I See the next slide for an example

move vs copy: constructor

22 // Copy constructor for deep copying
23 dynamic_array::dynamic_array(dynamic_array &arr)
24 {
25 // Copy size and declare new array
26 std::cout <<"copy constructor\n";
27 array=nullptr; size=arr.length();
28 if(size>0) {
29 array=new double[size];
30 // Copy values into new array
31 for(size_t i{};i<size;i++) array[i] = arr[i];
32 }
33 }

34 // Move constructor
35 dynamic_array::dynamic_array(dynamic_array &&arr)
36 { // steal the data
37 std::cout <<"move constructor\n";
38 size=arr.size;
39 array=arr.array;
40 arr.size=0;
41 arr.array=nullptr;
42 }

Listing 6 : selection of PL6/move.cpp

./codes/PL6/move.cpp

move vs copy: assignment

43 // Assignment operator for deep copying
44 dynamic_array & dynamic_array::operator=(←↩

dynamic_array &arr)
45 {
46 std::cout <<"copy assignment\n";
47 if(&arr == this) return *this; // no self ←↩

assignment
48 // First delete this object’s array
49 delete[] array; array=nullptr; size=0;
50 // Now copy size and declare new array
51 size=arr.length();
52 if(size>0){
53 array=new double[size];
54 // Copy values into new array
55 for(size_t i{};i<size;i++) array[i] = arr[i];
56 }
57 return *this; // Special pointer!!!
58 }

59 // Move assignment operator
60 dynamic_array & dynamic_array::operator=(←↩

dynamic_array&& arr)
61 {
62 std::cout <<"move assignment\n";
63 std::swap(size,arr.size);
64 std::swap(array,arr.array);
65 return *this; // Special pointer!!!
66 }

Listing 7 : selection of PL6/move.cpp

./codes/PL6/move.cpp

Move semantics
std::move

I Suppose I know an lvalue object is no longer useful, and I do want to use the move
assignment to reassign its data

I Is there a way to do this?
I Need to turn (cast?) an lvalue to an rvalue
I Can be done by using a static_cast using an rvalue reference, but nicer is the
std::move function defined in C++

I Misnamed, because it turns an lvalue into something that can be used like an rvalue
(and thus its data can be moved, and the objects content destroyed). Thus std::move
itself moves nothing!

move vs copy: assignment

113 dynamic_array a3(2);
114 std::cout<<"Length of a3 = "<<a3.length()<<std::endl;
115 a3[0] = 0.5;
116 a3[1] = 1.0;
117 std::cout<<"a3[0] = "<<a3[0]<<std::endl;
118 std::cout<<"a3[1] = "<<a3[1]<<std::endl;
119 std::cout<<std::endl;
120 std::cout<<"Now move values from a1 by assignment"<<←↩

std::endl;
121 dynamic_array a4;
122 a4= std::move(a3);
123 std::cout<<"Length of a4 = "<<a4.length()<<" and of ←↩

a3 ="<<a3.length()<<std::endl;
124 std::cout<<"a4[0] = "<<a4[0]<<std::endl;
125 std::cout<<"a4[1] = "<<a4[1]<<std::endl;
126 std::cout<<std::endl;

Listing 8 : selection of PL6/move.cpp

Declaring array a3 with parameterized constructor
Parameterized constructor called
Length of a3 = 2
a3[0] = 0.5
a3[1] = 1

Now move values from a1 by assignment
Default constructor called
move assignment
Length of a4 = 2 and of a3 =0
a4[0] = 0.5
a4[1] = 1

Listing 9 : selection of PL6/move.out

./codes/PL6/move.cpp
./codes/PL6/move.put

�
�

�

Summary, part 2

Prelecture 6
Summary, part 2

In the second part of today’s lecture: we looked at how and when to replicate objects,
covering
I lvalues, rvalues
I move semantics

