
Object-Oriented Programming in C++
Pre-Lecture 4

Prof Niels Walet (Niels.Walet@manchester.ac.uk)

Room 7.07, Schuster Building

Version: February 15, 2020

Prelecture 4
Outline

I From structures to classes
I Basic features of the C++ class

I public and private data
I access functions
I constructors and destructors
I member functions outside class
I function return types

I Vectors and objects

Classes
What is an object?

I Object-Oriented Programming is based on the concept of objects
I Think of real objects (e.g. apple, pencil, car):

I they are defined by their properties (nouns)
I they are also defined by their functionality (verbs)

I We can extend this concept to how we store and manipulate data
I A simple way to capture all the properties of an object (which actually originates in the

C language) is the struct
I Example: consider a particle object. We can define a struct to hold its properties

(data)

struct particle
{
std::string type;
double mass;
double momentum;
double energy;

};

Classes
Structures

We can then declare a structure for every particle and also define their associated data,
using "dot" notation to access internal data members, e.g.

// Create 2 particles
particle electron;
electron.type="electron";
electron.mass=5.11e5;
electron.momentum=1.e6;
electron.energy=sqrt(electron.mass*electron.mass+electron.←↩
momentum*electron.momentum);
particle proton;
proton.type="proton";
proton.mass=0.938e9;
proton.momentum=3.e9;
proton.energy=sqrt(proton.mass*proton.mass+proton.momentum*←↩
proton.momentum);

Classes
Structures

Now we probably want to do something with our data so we can write some functions, e.g.
to print out the data

void print_data(const struct particle &p)
{
std::cout.precision(3); // 2 significant figures
std::cout<<"Particle: [type,m,p,E] = ["<<p.type<<","<< p.←↩
mass

<<","<<p.momentum<<","<<p.energy<<"]"<<std::endl;
return;

}

or to calculate the Lorentz factor

double gamma(const struct particle &p)
{
return p.energy/p.mass;

}

Classes: Structures full code

1 // PL4/struct.cpp
2 // An example using a struct as a class
3 // Niels Walet, last updated 04/12/2019
4 #include<iostream>
5 #include<string>
6 #include<cmath>
7 struct particle
8 {
9 std::string type;
10 double mass;
11 double momentum;
12 double energy;
13 };
14 void print_data(const struct particle &p)
15 {
16 std::cout.precision(3); // 2 significant figures
17 std::cout<<"Particle: [type,m,p,E] = ["<<p.type<<","←↩

<< p.mass
18 <<","<<p.momentum<<","<<p.energy<<"]"<<std::endl←↩

;
19 return;
20 }
21 double gamma(const struct particle &p)
22 {
23 return p.energy/p.mass;
24 }

25 int main()
26 {
27 // Create 2 particles
28 particle electron;
29 electron.type="electron";
30 electron.mass=5.11e5;
31 electron.momentum=1.e6;
32 electron.energy=sqrt(electron.mass*electron.mass+←↩

electron.momentum*electron.momentum);
33 particle proton;
34 proton.type="proton";
35 proton.mass=0.938e9;
36 proton.momentum=3.e9;
37 proton.energy=sqrt(proton.mass*proton.mass+proton.←↩

momentum*proton.momentum);
38 // Print out details
39 print_data(electron);
40 print_data(proton);
41 // Calculate Lorentz factors
42 std::cout.precision(2);
43 std::cout<<"Particle 1 has Lorentz factor gamma="
44 <<gamma(electron)<<std::endl;
45 std::cout<<"Particle 2 has Lorentz factor gamma="
46 <<gamma(proton)<<std::endl;
47 return 0;
48 }

Listing 1 : selection of PL4/struct.cpp

./codes/PL4/struct.cpp

Classes
Structures: why not?

I Program outputs

Particle: [type,m,p,E] = [electron ,5.11e+05,1e+06,1.12e+06]
Particle: [type,m,p,E] = [proton ,9.38e+08,3e+09,3.14e+09]
Particle 1 has Lorentz factor gamma=2.2
Particle 2 has Lorentz factor gamma=3.4

I Some disadvantages of this method:
I Data for each structure must be defined outside of the structure declaration itself.

Makes it easy to forget to set a particular value
I Data is open to being altered or corrupted
I Functions acting on the data are separate and require the data to be passed as a parameter

I What if we could combine the data and their functions in one structure?
I That is the key of object-oriented programming
I This is exactly what C++ offers in the form of a class

Classes
The C++ Class

I Look at a very basic class based on our particle structure

7 class particle
8 {
9 public:
10 std::string type;
11 double mass;
12 double momentum;
13 double energy;
14 };

Listing 2 : selection of PL4/class1.cpp

I This code works identically.
I C++ definition: A struct is just a special class where all members are public
I In our main function, two objects (p1 and p2) are created of class particle (known as

instances of the class)
I Notice the public: keyword. This instructs the compiler that everything declared below

it can be accessed from outside the class
I Anything not declared public will be invisible outside the class (is private:)
I There is a third option protected: will be discussed in later weeks.

./codes/PL4/class1.cpp

Classes
The C++ Class: public and private data

I Now let us modify the class to

6 class particle
7 {
8 private:
9 std::string type;
10 double mass;
11 double momentum;
12 double energy;
13 };

Listing 3 : selection of PL4/class2a.cpp

I Data is now private: to the class
I If we try to compile the code, we will now get a large number of errors as we are

accessing private members outside the class!
I This is not a problem, but actually an advantage: it allows us to keep data secure
I But we still need a way to access private data!

./codes/PL4/class2a.cpp

Classes
The C++ Class: access functions

I Apart from the public nature of the data, the main distinction between a class and a
struct is that a class can (and almost always will) include functions to manipulate its
data

I Let us define one to set our type and one to print its value

7 class particle
8 {
9 private:
10 std::string type;
11 double mass;
12 double momentum;
13 double energy;
14 public:
15 // Function to set type of particle
16 void set_type(const string &ptype) {type=ptype;}
17 // Function to print type of particle
18 void print_type() {cout<<"Particle is of type "<<type<<←↩

endl;}
19 };

Listing 4 : selection of PL4/class3.cpp

./codes/PL4/class3.cpp

Classes
The C++ Class: access functions

I Here, we added two public functions. This is because we wish to access these
functions from outside the class.

I When a new object is created, we use the functions to refer to that particular object.
I We access these functions in a similar way to accessing the object’s (public) data:
myObject.myFunction(myArgument); making clear that the function is associated
with the object

I Example

string type("electron"); particle p1; p1.settype(type); p1.printtype();

I We only allow access to the data through access functions. We can protect our data
from any undesirable consequences in designing these functions.

Classes
The C++ Class: constructors and destructors

I Setting all variables like this is rather clumsy - there is a better way!
I Two special functions called the constructor and destructor can be defined
I A constructor is a function that is automatically called when a new object is created
I Even more powerful when combines with default values.
I Can be overloaded, to give different actions dependent on arguments
I It has the same name as the class itself and has no return type
I Its main use is to set values for the object’s member data
I Similarly, a destructor function is used to destroy an object’s member data

Classes
The C++ Class: constructors and destructors

Our class with constructors and a destructor

7 class particle
8 {
9 private:
10 std::string type {"Ghost"};
11 double mass {0.0};
12 double momentum {0.0};
13 double energy {0.0};
14 public:
15 // Default constructor
16 particle() = default ;
17 // Parameterized constructor
18 particle(std::string particle_type , double particle_mass , double particle_momentum) :
19 type{particle_type}, mass{particle_mass}, momentum{particle_momentum},
20 energy{sqrt(mass*mass+momentum*momentum)}
21 {}
22 ~particle(){std::cout<<"Destroying "<<type<<std::endl;} // Destructor
23 double gamma() {return energy/mass;}
24 void print_data();
25 };

Listing 5 : selection of PL4/class4.cpp

./codes/PL4/class4.cpp

Classes
The C++ Class: constructors and destructors

I Let’s look at the first constructor

particle() = default ;

I This is our default constructor and will be called when we declare an object with no
parameters, e.g. particle p1; // calls our default constructor

I In this case, the particle type is Ghost and its other data are set to zero.
I The destructor is called when a function exits (including main, i.e. end of program)

~particle(){std::cout<<"Destroying "<<type<<std::endl;} ←↩
// Destructor

I Really only useful when dynamically allocating memory (if we use new in the
constructor, delete would go here); but good practice to include one!

Classes
The C++ Class: constructors and destructors

I Note that we actually define two different constructors (making use of overloading!)
I The second is a parameterized constructor

particle(std::string particle_type , double particle_mass ,←↩
double particle_momentum) :
type{particle_type}, mass{particle_mass}, momentum{←↩
particle_momentum},
energy{sqrt(mass*mass+momentum*momentum)}

{}

I This constructor allows us to pass values for our data when creating our object (and
also computes the energy)

Classes
The C++ Class: member functions outside class

I So far, all functions were defined within the class itself (e.g. constructors), but we have
not specified the details for print_data!

I Such a larger member function, included in full detail, can make the code look clumsy
I Solution: put implementation of such member functions outside of the class (or even in

a separate file...)
I Important note: member functions must be prototyped inside the class
I Example: define a function to print an object’s data. We first declare its existence inside

class using function prototype

void print_data();

Classes
The C++ Class: member functions outside class

I Now outside the class we define the function itself

void particle::print_data()
{
std::cout.precision(3); // 2 significant figures
std::cout<<"Particle: [type,m,p,E] = ["<<type<<","<< mass

<<","<<momentum<<","<<energy<<"]"<<std::endl;
return;

I The names of functions defined outside are preceded with the class name and the
scope resolution operator ::

I This tells the compiler which class the function actually belongs to
I Without it the compiler would assume the function to be an ordinary function (not a

member function of particle), and then it cannot act on private members....

Classes
The C++ Class: function return types

I Our member functions have not returned anything but this is possible as it is with
normal functions

I As a counter example: define a function that returns Lorentz factor γ

I In the class we would write

double gamma() {return energy/mass;}

I Then in the main program we can use

41 electron.print_data();
42 proton.print_data();
43 // Calculate Lorentz factors
44 std::cout.precision(2);
45 std::cout<<"Particle 1 has Lorentz factor gamma="
46 <<electron.gamma()<<std::endl;

Listing 6 : selection of PL4/class4.cpp

./codes/PL4/class4.cpp

Classes
Final refinement: using vectors

Look at the following piece of code

37 {
38 std::vector<particle> particle_data;
39 particle_data.push_back(particle("electron",5.11e5,1.e6));
40 particle_data.push_back(particle("proton",0.938e9,3.e9));
41 //vector<particle >::iterator particle_it;
42 for(auto particle_it=particle_data.begin();
43 particle_it <particle_data.end();
44 ++particle_it){
45 particle_it ->print_data();
46 std::cout<<"has Lorentz factor gamma="<<particle_it ->←↩

gamma()<<std::endl;
47 }
48 return 0;
49 }

Listing 7 : selection of PL4/class5.cpp

./codes/PL4/class5.cpp

Classes
Final refinement: using vectors

I This uses a few refinements. If we have a large number of particles, it is much easier to
use a vector to contain all of them (or a list?)

I We can then use iterators over the data to output all the information
I Here we use the arrow -> operator to get a class member of a dereferenced pointer,
particle_it->print_data() is the same as (*particle_it).print_data(), but
easier to read.

I Remember, the iterator particle_it is like a pointer!

Classes
Buzzword Summary

I A class is the set of rules used to define our objects. It specifies which types of data
and functions are created and their scope (private or public)

I An object is an instance of a class. Each object will have its own set of data.
I A member refers to either data or a function belonging to a particular class, e.g. a

constructor will be a member function. Member functions are sometimes called
methods

I A constructor is a special function called when a class is instantiated, usually to
initialize an object’s member data. If not user generated, generated by compiler.

I A destructor is the function called when an object is destroyed (usually automatically
when exiting a function; we say “the object goes out of scope”–this happens when we
can no longer access the object). If not user generated, generated by compiler.

The END

