
Object-Oriented Programming in C++
Pre-Lecture 1: A simple C++ program

Prof Niels Walet (Niels.Walet@manchester.ac.uk)
Room 7.07, Schuster Building

January 4, 2020



Some very basic properties

I C++ Is a compiled language (i.e., there is a stage between writing the code and running it
called "compilation");

I No fixed indentation;
I multiple statement per line or multiple lines per statement;
I Each statement ends with a semicolon (;)
I C++ is a strongly typed language, i.e., each variable must be declared to contain a certain type

of object (e.g., integers, floats, doubles, strings etc.).
I There are methods to convert (“cast”) between types. Both explicit and more dangerous

implicit. More later!
I Computers use finite storage to store a variable. The typical storage for each variable is

specified in a number of bytes: a byte is 8 bits, i.e., a binary number of 8 digits. In decimal this
ranges [0..255].



A few variables types

Integer: Normally specified as an int. Integers typically require at least 4 bytes of memory space
and ranges from −2147483648 to 2147483647. Also see long int and unsigned int.

Character: a char can store one character. Normally requires 1 byte of memory space (and can
thus be mapped on an integer 0 to 255).

Boolean: A bool stores logical values, either true or false or 0 and 1 (deprecated).
Floating Point: The basic real number type is a float for storing "single precision" floating point

values. Typically requires 4 bytes of memory space, in which case the precision due to finite
storage is about 7−8 decimal places

Double Floating Point: The more commonly used double typically uses 8 bytes of memory
space, and has a precision of 14−15 significant digits.

void: Void means without any value. void datatype represents a valueless entity. Void data type is
used for those function which does not returns a value.

size_t: A specific unsigned integer variable always available in C++. Size depends on compiler.



Conversion between variables types

We may want to convert between variables
double r; r=1;

Here we assign an implicit integer (1) to a double variable: the integer is cast to a double (a
non-exact number!)

We can also do the following
int i{1}; double r; r=static_cast <double >(i);

This is called an explicit cast.

What happens if we write
double r{1.5}; int i; i=static_cast <int>(r);

Well, if you check the variable i it is now 1. OK, and now what happens for r{-1.5}?



A simple C++ program

Here is a simple example of a C++ program
1 // PL1/simple.cpp
2 // A particularly simple example of C++ in action!
3 // Niels Walet, last updated 04/12/2019
4 #include<iostream>
5 int main()
6 {
7 const int current_year{2020}; //Declare and initialise
8 std::cout << "C++ is the best programming language in "<<current_year <<"!"<<std←↩
::endl;

9 return 0;
10 }

Listing 1 : PL1/simple.cpp

which prints the following message to the screen
C++ is the best programming language in 2020!

./codes/PL1/simple.cpp


A simple C++ program:
the “main” function

Let us have a look at some of the key features.
I The line
int main()

defines a special function called main(), which according to the language standard must return
an integer. (This is why we give the function type int)

I Some compilers allow for other types; please refrain from doing so.
I The convention is that successful execution returns the value 0, see

return 0;

I Other numbers are used to denote an error...



A simple C++ program:
comments

I The first line
// PL1/simple.cpp

is an example of a C++ comment. Comments of this type do not need closing - they last for one
line only.

I C++ comments can also be put at the end of a line
const int current_year{2020}; //Declare and initialise

I What is called "C-style comments" (i.e., inherited from the C language)
/*...*/

can also be used when detailed (long) comments are required (and thus need to be spread
over multiple lines):
/* This is an example of a traditional C comment.
As you can see it needs to be opened and closed
but can be spread over several lines as is done here

*/



A simple C++ program: standard headers
standard headers

I The next line
#include<iostream>

is usually present in a C++ program that does input and/or output. It allows functions and
variables from the C++ I/O library (part of the C++ standard library) to be used.

I We use this in the program to print our message to the screen
std::cout << "C++ is the best programming language in "<<current_year <<"!"<<←↩
std::endl;

using the variables cout and endl, and the operation <<
I For completeness: Alternative C-style/python style output is also available

But avoid this like the plague in this course!
#include<cstdio>
printf("C++ is the best programming language in %d!\n",year);



A simple C++ program:
the standard namespace

I Another feature of C++ is also used, a namespace, in this case the standard namespace std
I A namespace is a container (accessed through its name) within which declarations of variables,

arrays, functions, classes etc. can all be placed. We can use the same variable name in
different namespaces. This avoids name clashing (important for large programs).

I The above namespace is for the C++ standard library (where cout and endl reside).
I Usually namespaces are specified when referring to an object using the name resolution

operator ::.
I We shall not use
using namespace std;

which allows us to use cout etc. without a prefix.
I We will learn more about namespaces later in the course.



A simple C++ program:
constants

The line
const int current_year{2020}; //Declare and initialise

uses two useful C++ features.
I The first is the const qualifier which forbids the value of year to be changed once initialised.

I You may see in existing codes, but must never use, the following technique
#define year 2020

This uses the “Pre-processor”. The modern method (using const) is safer because it specifies the type of the
constant (instead of relying on the pre-processor to get it right). This feature becomes even more important
when more complicated objects are constructed (see later).



A simple C++ program:
initialisation

I We have also used a specific way to initialize the constant:
const int current_year{2020}; //Declare and initialise

(This is the universal brace initialization, as introduced in C++11)
I The same method applies for (non-constant) variables, e.g.
int a{0}; // declare a new integer and initialize to zero

I But we can also use the C++03 form
int a(0); // declare a new integer and initialize to zero

I The old C-style initialisation is also allowed
int a=0; // declare a new integer and initialize to zero

Please stick to the first form! We will discuss some of the differences later in the course.



A simple C++ program:
declaring variables

I In C++ declarations can appear anywhere; the only constraint is that they must occur before the
variable or function is used, e.g.,
1 // PL1/midstream.cpp
2 // An example of decaring variables "just in time"
3 // Niels Walet, last updated 04/12/2019
4 #include<iostream>
5 int main() {
6 const int current_year{2020};
7 std::cout<<"C++ is the best programming language in "
8 <<current_year <<"!"<<std::endl;
9 const double solar_mass_in_kg{1.989e30}; // I only need to declare this here←↩
!

10 std::cout<<"Did you know that the mass of the sun is "
11 <<solar_mass_in_kg <<" kg?"<<std::endl;
12 return 0;
13 }

Listing 2 : PL1/midstream.cpp

gives the output
C++ is the best programming language in 2020!
Did you know that the mass of the sun is 1.989e+30 kg?

I We only declare and initialize msun_in_kg when we need it.

./codes/PL1/midstream.cpp


A simple C++ program:
standard I/O streams

We need to understand a little more about I/O to write effective codes.
I We encountered the C++ method for printing output (using cout) above. C++ interfaces with

I/O devices using a model, called streams.
I The stream connected to the standard output (in our case usually a text window on your

screen) is called cout. The stream connected to the standard input (usually the keyboard) is
called cin.

I The streams (and thus the devices connected to the stream) are accessed through two new
operators:
I The insertion operator, <<, inserts data to a stream (device)
I The extraction operator, >>, extracts data from a stream (device)

I We will learn a lot more about other streams (files and strings) in the next 2 lectures.



A simple C++ program:
standard I/O streams examples

I Output to the screen:
cout<<"Hello!"<<endl;

inserts the string Hello! to the stream cout, followed by a new line. Equally
cout<<"Hello!\n";

produces the same result.
I Input from the keyboard:
int year; cin>>year;

extracts a value from cin and stores it in year, declared with type int.
I The >> operation can sometimes leave a newline character - to ignore this (e.g. when mixing

with getline) one often adds the line
cin.ignore();

after every cin>> statement. (Only really necessary in complex inputs.)



A simple C++ program:
standard I/O streams: errors

I We can also check for bad input
4 #include<iostream>
5 int main()
6 {
7 int any_year;
8 std::cout << "Enter a year: ";
9 std::cin >> any_year;
10 // Check input is valid
11 while(std::cin.fail()) {
12 std::cout <<"Sorry, your input was not valid, please enter a year: ";
13 // Clear fail bit and ignore bad input
14 std::cin.clear();
15 std::cin.ignore();
16 std::cin >> any_year;
17 }
18 std::cout<<"C++ is the best programming language in "<<any_year <<"!"<<std::←↩
endl;

19 }

Listing 3 : selection of PL1/chkinput.cpp

./codes/PL1/chkinput.cpp


A simple C++ program:
standard I/O streams: errors

I This outputs (with input displayed)
Enter a year: MMXX
Sorry, your input was not valid, please enter a year: Sorry, your input was ←↩
not valid, please enter a year: Sorry, your input was not valid, please ←↩
enter a year: Sorry, your input was not valid, please enter a year: 2020
C++ is the best programming language in 2020!

I Can you explain why we get four error lines?



A simple C++ program:
concluding remarks

I We have looked at a few simple features of C++
I We have concentrated on a the basic features required for writing simple codes

I Use of I/O streams C++
I Standard headers
I the standard namespace std
I constants
I declaration and initialisation
I casts

I I suggest you look at the examples (they are all on the course site) and make some changes!


